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• For maximum power transfer from the source,  Zin,opt = Zs
*

• Matching network transforms ZL to Zin,opt at the given frequency 
of operation. 

Impedance Matching
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Impedance Matching Examples

• Maximize power transfer to the antenna at the transmitter front-
end.

• Loss in matching network directly affects PA/Tx efficiency.
• Maximize power transfer to the LNA at the receiver front end
• Loss in matching network directly affects LNA/Rx noise figure.
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Impedance Matching Example on Smith Chart
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• Impedance transformation can be represented by a path on the 
Smith Chart 



Smith Chart as a Graphical Representation
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• Smith Chart is a graphical representation of impedance and 
transformation between impedances 

𝜞𝑳 =
𝒁𝑳 − 𝒁𝟎

𝒁𝑳 + 𝒁𝟎



• The matching network for given ZL and Zin is not unique 

• Ideally, there are infinite possible paths between the impedances 

(A and B) on the Smith Chart: Which one’s the most efficient?

Number of Possible Paths in Transformation
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Matching Network with Lossless Passives
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• Of course, for lossless passives, the efficiency of all paths are the 

same (100%) 

• However, they will have different bandwidths.

Freq=100 GHz Qind → ∞, Qcap→ ∞



Matching Network with Lossy Passives
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• Efficiency of each path (representing different matching 

network) is different for lossy passives.

• Ƞmax (observed here) = 53% for a two-stage network.

Qind=10, Qcap=10



• Non Optimality of Conjugate Matching 
Networks
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30 ohm
Conjugate Matching
Optimal Matching

74%
70%
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60%
55%
50%

,

Z L =30 Ω

• Zs=Rs(1+Qs)=10-20j, Qind=5 , Qcap=10 

Non-optimality of Conjugate Matching 

Matching 
Network
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Zload(A) = 
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Zs*=10+20j (Ƞ=60%)

Zin(opt)=17+15j 
(Ƞ=74%)

• Conjugate matching may be sub-optimal because more power 

may be wasted in transforming to Zin=Zs*

• Maximizing Pin does not necessarily maximize PL



• 𝑃𝑟𝑒𝑎𝑐 =
1

2
𝐼𝑠
2𝑋𝑖𝑛 = 𝑃𝑖𝑛𝑑 − 𝑃𝑐𝑎𝑝 + 𝑃𝑟𝑒𝑎𝑐,𝐿

• 𝑃𝑙𝑜𝑠𝑠 =
𝑃𝑖𝑛𝑑

𝑄𝑖𝑛𝑑
+

𝑃𝑐𝑎𝑝

𝑄𝑐𝑎𝑝
≥

𝑃𝑖𝑛𝑑−𝑃𝑐𝑎𝑝

𝑄𝑖𝑛𝑑
=

𝑃𝑋−𝑃𝑟𝑒𝑎𝑐,𝐿

𝑄𝑖𝑛𝑑

• 𝑿𝒊𝒏,𝒐𝒑𝒕 = 𝑹𝒔
𝑸𝒊𝒏𝒅
𝟐 𝑸𝒔−𝑸𝒔−𝟐𝑸𝒊𝒏𝒅

𝟏+𝑸𝒊𝒏𝒅
𝟐 , 𝑹𝒊𝒏,𝒐𝒑𝒕 = 𝑹𝒔

𝟐𝑸𝒊𝒏𝒅𝑸𝒔+𝑸𝒊𝒏𝒅
𝟐 −𝟏

𝟏+𝑸𝒊𝒏𝒅
𝟐 ,   𝑷𝑳𝒐𝒂𝒅,𝑴𝒂𝒙 =

𝑷𝒂𝒗𝒔
𝟏+𝑸𝒊𝒏𝒅

𝟐

𝑸𝒊𝒏𝒅 𝑸𝒊𝒏𝒅+𝑸𝒔 𝟏−
𝑸𝑳

𝑸𝒊𝒏𝒅

Analysis of Optimal Inductor-only matching 
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• 𝑹𝒊𝒏,𝒐𝒑𝒕 = 𝑹𝒔
𝟐𝑸𝒊𝒏𝒅𝑸𝒔+𝑸𝒊𝒏𝒅

𝟐 −𝟏

𝟏+𝑸𝒊𝒏𝒅
𝟐 = 𝟏𝟕, 𝑿𝒊𝒏,𝒐𝒑𝒕 = 𝑹𝒔

𝑸𝒊𝒏𝒅
𝟐 𝑸𝒔−𝑸𝒔−𝟐𝑸𝒊𝒏𝒅

𝟏+𝑸𝒊𝒏𝒅
𝟐 = 𝟏𝟓,

• 𝑷𝑳𝒐𝒂𝒅,𝑴𝒂𝒙 = 𝑷𝒂𝒗𝒔
𝟏+𝑸𝒊𝒏𝒅

𝟐

𝑸𝒊𝒏𝒅 𝑸𝒊𝒏𝒅+𝑸𝒔 𝟏−
𝑸𝑳

𝑸𝒊𝒏𝒅

=0.74 , 𝑷𝒊𝒏 = 𝟎. 𝟗𝑷𝒂𝒗𝒔

Analysis of Optimal Inductor-only matching 
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Inductor-only matching (Smith Chart Coverage)

ZL

Zin,opt

η1 η2 η3 η5

η4

η1=η2=η3=η4=η5

Range of possible Zin,opt through 
purely inductive networks 

Efficiency of all  paths  from ZL to 
Zin,opt located in this ‘reachable’ 

space  are equal

• Inductor-only paths are optimal and have the same efficiency

• Given ZL, there is a limited coverage on the Smith Chart for 

Inductor-only matching

Qind=5 



• Globally Optimal Impedance Matching 
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Globally Optimal Path between ZA and ZB

• What is the globally optimally efficient path between two 

impedances ZA and ZB?

• Any  arbitrary path on the Smith can be realized with infinitesimally 

small/large elements, if necessary.
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Globally Optimal Path between ZA and ZB

• Discretize the Smith Chart Space  into infinitesimally close 

admittance and impedances.

Impedance CirclesAdmittance Circles
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Globally Optimal Path between ZA and ZB

• Efficiency of any arbitrary path can be reduced to the product of 

efficiencies of the constituent sub-paths.
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 y
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Parallel 
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ΔZind 

Yy=1/Zy

 Yy+ΔYind 

 Zy+ΔZy 

Series
Cap. ΔZcap 

Zy

Zy+∆Zy
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Globally Optimal Path between ZA and ZB

• Problem of optimally efficient matching network reduces to finding 

the shortest distance in a transformed space.

Defining 𝒅𝒊 = −𝒍𝒏 𝜼𝒊 ⇒ 𝒅𝒕𝒐𝒕 =  𝒅𝒊

Maximize 𝜼 ⇒ 𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒅𝒕𝒐𝒕



Shortest Path (Maximally Efficient) Algorithm: 
Djikstra’s Algorithm

All Nodes unvisited.
Current Node = Load.

Nodelength of load=0 and rest =   .

`
Current Node  

Add to Visited set

All Visited

`

Shortest Unvisited Node 
 Vk  from the Visited set. 
Update its nodelength.

f(Vk)=|Z(Vk)-Zs*|

`Store the previous node 
for backtracing

YES

NO

 

STOP

  

• Globally maximally efficient algorithm can be obtained from Djikstra’s

Algorithm with complexity O(V2)(V=no. of nodes in the graph)

Djikstra’s Algorithm (Wikipedia)



Globally Optimally Efficient Path (Example)

• Optimal paths vary with passive quality factors.

• Globally optimal paths can employ elements with infinitesimally 

small/large values.



• 𝜂𝑠 =
𝑃𝑖𝑛

𝑃𝑎𝑣𝑠
=

0.5∗𝑉𝑠
2∗𝑅𝑖𝑛

 𝑍𝑠+𝑍𝑖𝑛 2

0.5∗
𝑉𝑠
2∗𝑅𝑠

𝑅𝑠+𝑅𝑠 2

=
4𝑅𝑖𝑛𝑅𝑠

𝑍𝑠+𝑍𝑖𝑛
2 , 𝜂𝑀𝑁 =

𝑃𝐿

𝑃𝑎𝑣𝑠
,

• 𝜼𝒕𝒐𝒕𝒂𝒍 =
𝑷𝑳

𝑷𝒂𝒗𝒔
= 𝜼𝒔 𝜼𝑴𝑵

• Change the function 𝑓 𝑉𝑘 = −l 𝑛 𝜂𝑡𝑜𝑡

• 𝑃𝑜𝑢𝑡= 𝑒−𝑓(𝑉𝑛)

Globally Optimally Efficient Power Transfer
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• Globally optimal network provides insight into an optimally 
efficient network of finite order

Example1: Approximation by finite network @100G



Ex. 2: Optimal Matching Vs Optimal Conjugate

ZL=50Ω

Zin,opt=9+15j
Zconj=Zs*

• Optimally matching (even no matching) can have significantly 
higher efficiency than conjugate matching.

Optimum Matching (η=57%)

32pH

Conjugate Matching (η=20%)

10pH16pH

No Matching (η=25%)



X

Ex. 2: Optimal Matching Vs Optimal Conjugate

Ƞ of MN from 50 Ω to 
various impedances

Ƞ due to mismatch at 
the source

Resultant Ƞ

1

0

0.5



Combiner Network for mm-Wave PA (100 GHz)

Algorithm for
Optimal 
Matching

X=

ZLP = 5+13j  Ω 

Load-Pull 1 dB 
Contour

22 pH

20 pH

Zopt=6+12j Ω 

ZLP=5+13j Ω 

Optimal Loadpull 
matching

Optimum  matching 
78%

75%

72%

70%

Zcomb = 23-31j Ω 



100 GHz PA Chip Micrograph
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Measured Sparameters of 100 GHz PA chip
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jX R jX

R

A B A B

ZAB=R+jX
YAB=1/ZAB = a+ jb
QS=|X/R|=|a/b|

YAB=1/R + 1/jX =a+jb
ZAB=1/YAB

QP=|R/X|=|b/a|

Series Model Parallel Model

Passive Modelling
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Complex circuit  Combination of Series / Parallel Passives
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≡

𝒁𝑨 =
𝒁𝟐𝒁𝟑

𝒁𝟏+𝒁𝟐+𝒁𝟑
𝒁𝑩 =

𝒁𝟏𝒁𝟑

𝒁𝟏+𝒁𝟐+𝒁𝟑
𝒁𝑪 =
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(V1,I1)(V3,I3)

Delta  to T conversion
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Complex Circuit
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Reduced form of Complex Circuit

• Every complex combination of passives can be reduced to a 
combination of series / parallel passives


