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Phased Array Principle
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Far Field Calculation in Phased Arrays
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Typically, D=1/2

a; & ¢; define a spatial filter
response at o,. The spatial filter
can have one or more peaks,
nulls, etc. at various directions.

Generally, beam-width (for the
peaks of these spatial filters) is
proportionalto (Nx D /1)

From reciprocity, radiation
patterns (spatial filters) are similar
In TX and RX.
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Delay-and-Sum RF Beam-Forming
aka “Timed Array”
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Passive Delay-and-Sum RF Beam-Forming
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Approximating Time Delay with Phase Shift

a(t)cos(a)t + <p(t))
True time delay different ‘l'
between different antenna > T
elements of the phased array ‘1'

a(t —t)cos|lw(t — 1) + @(t — 7)]

|

) ~

Narrowband assumption:
amplitude & phase
modulations are much slower l,

compared with 1/ t. a(t)COS[a)t 4+ go(t) —_ a)T]

Delayed version of a generic narrowband modulated waveform can be
approximated with a phase shifted version of the waveform.
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Narrowband RF Beam-Forming

aka “Phased Array”
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First Antenna Array: 1909

“It had always seemed most desirable
to me to transmit the waves, in the
main, in one direction only.” Karl Braun
Nobel Lecture, December 11, 19009.

Karl Ferdinand Braun
1909 Nobel Prize for Physics
with Guglielmo Marconi

“contributions to the development of
wireless telegraphy”
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First Phased Array Radar: 1943
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B-29 Superfortreé with
AN/APQ-7 EAGLE

6 meter long array of 250 transmitting
dipoles at X band placed in the Developed the first Phased Array
aircraft's leading edge wing capable of | | Radar, AN/APQ-7 EAGLE, at MIT’s
electronically steering the beam over newly established Radiation

an 60° angle in front of the aircratft. Laboratory in 1943.

Luis Walter Alvarez

1968 Nobel Prize for Physics
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Modern RF Phased Array Radars
Electronically Scanned Arrays (ESA)

F35 Lightning PATRIOT lIron Dome

AN/APG-81 Phased Array Tracking Radar
to Intercept On Target

0.7m Diameter 2.44m Diameter Scalable Dimensions
1,200 Elements 5,161 Elements Varying number of elements
X Band (8 — 12.5 GHz) C Band (4 — 8 GHz) S Band (2 — 4 GHz)
Tracking 23 aerial targets Tracking of 100 targets Tracking of 1200 targets

GaAs T/R Modules
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Modern Commercial RF Phased Arrays

Automotive Radar

Cross
Tral'ﬂc
Blind Spot

Chm MMW
ide Im Lane Departure Warning =~

l Brake Assist’  Ada
|
Vision Control
ide |ll'l Lane Departure Warning
cmoe BllndSpat W
/ Traﬂ'ic
BLUE = RADAR Application
ORANGE = Ultrasonic
Frequency Band: 76 — 77 GHz
Frontend Tech.: GaAs or SiGe
Manufacturers: Delphi, Bosch, ...

Wireless Connectivity

Frequency Band: 59 — 64 GHz
Technology: CMOS

Manufacturers: SiBeam, Wilocity, ...
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The “Moore’s Law” Paper

Cramming more components
onto integrated circuits

The author

Dr. Gordon E. Moore is one of
the new breed of electronic
engineers, schooled in the
physical sciences rather than in
electronics. He eamed a B.S.
degree in chemistry from the
University of California and a
Ph.D. degree in physical
chemistry from the California
Institute of Technology. He was
one of the founders of Fairchild

With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65,000 components on a single silicon chip

Semiconductor and has been
BF GDran E MDD re director of the research and
Director, Research and Development Laboratories, Fairchild Semiconductor development laboratories since

division of Fairchild Camera and Instrument Corp. 1959.

Electronics, Volume 38, Number &, April 19, 1963
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The Same Paper Predicts: 1

Chip Scaled Phased Array Radars

Even in the microwave area, structures mcluded in the
defimition of integrated electronics will become mereasingly
important. The ability to make and assemble components
small compared with the wavelengths mvolved will allow
the use of lumped parameter design, at least at the lower fre-
quencies. It is difficult to predict at the present time just how
extensive the invasion ol the microwave area by integrated
electronics will be. The successful realization of such items
as phased-array antennas, for example, using a multiplicity
of mtegrated microwave power sources, could completely
revolutionize radar.
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Early University Demonstrations

2003 — 2008

15

8-Ch 24-GHz RX
180nm SiGe HBT
[Caltech 2004]

4-Ch 24-GHz RX
180nm SiGe HBT
[Caltech 2005]

4-Ch 77-GHz RX
130nm SiGe HBT
[Caltech 2006]

4-Ch 24-GHz TX+RX
130nm CMOS
[USC 2006]

4-Ch 1-15 GHz RX FE
130nm CMOS
[USC 2007]
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4-Ch 24-GHz RX FE
130nm CMOS
[UCSD 2008]

16-Ch 45-GHz TX FE
130nm SiGe HBT
[UCSD 2008]
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Representative Industry Demonstrations’

(2010 — 2014)

ements

& TX RF Elemants
8 TX RF Elements
8 -TX RF Elements
8 TX-RF-Elements
B RX RF Elements
& RX RF Eléments
8 RX RF Elemeanis

B Bt - e TR e e s LoG oL ...‘,_'

s o T s ;;;r;eurra:::mrmrx G —— e
32-Ch 60-GHz Transceiver 16-Ch 60-GHz RX 32-Ch 60-GHz Transceiver
90nm CMOS 130nm SiGe HBT 65nm CMOS
[Intel 2010] [IBM 2010] [SiBeam 2011]
CP T:r( CHIP ; U1 : : ggj::;??jnd Cf_i" N GGHz Front-end Chip
: z| :
2 -_2.! = FHH
N O . e sean
4-Ch 60-GHz Transceiver 16-Ch 60-GHz Transceiver
40nm LP CMOS 40nm LP CMOS
[IMEC 2013] [Broadcom 2014]
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Outline

B Optical Beam Steering
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Optical Beam Steering Applications

LIDAR Laser Barcode Scanner
Laser
Receivers .
(2 Groups of H;_::.:_‘;g
Laotl ot 515 )
Emitters
(4 Groups of
Motor
Housing
Mounting
Base
64 Lasers / Detectors Mechanically Rotating Mirrors
Spin Rate: 300 — 900 RPM Scan Rate: 40 SPM
Unit Cost: ~$85,000 (Velodyne HDL-64E) Unit Cost: ~$100
Used in Google Self-Driving Cars Used in Retall
‘ USCViterbi  H. Hashemi IEEE CICC, San Jose, CA September 28-30, 2015
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Optical Beam Steering Applications

Digital u-Mirror Device Free Space Optical
Communications

> 10° Rotatable Micro-Mirrors Mechanically steerable mirrors for
ON/OFF Switching Speed: ~ 50 KHz automatic tracking
Unit Cost: ~$50
Used in Digital Light Processors (DLP)
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Conventional Optical Steering Methods
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Non-Mechanical Laser Beam-Steering *
CA Corp., 1963

R
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A. Miller, “Light deflecting device,” US 3305292 A, 1967 (filed 1963).

It has been suggested that a
collimated light beam, such
as that obtained from a laser
could be used for many
things if the beam could be
spatially deflected.

For example, the light beam
could be modulated and
used as a projection TV
display device if it could be
efficiently deflected.

Also, the laser beam could
be used for steerable optical
transmitting and receiving
antennas which are
desirable in certain types of
optical radar.

USC Viterbi

School of Engineering
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Laser Phased Array
RCA Corp., 1963

For example, an
electronically steerable laser
beam is useful in

an optical radar system, in
an optical communication
system wherein either the
transmitter or receiver is in
motion, in ultra high speed

% = printing systems, in
%gp FFig. /. machining devices that are
s Wes controlled by means of
RE electronically directing the
QP laser, beam, and in ultra

high speed logic circuits.

F. Sterzer, “Phased array light deflecting system,” US 3331651 A, 1967 (filed 1963).
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Beam-Steering via Phase Modulators

J

HU APL, 1972

46 CHROMIUM-GOLD ELECTRODES

0.5 mm
ILLUMINATION
(POLARIZATION : -
PARALLEL TO - —
THE X3 AXIS) ( —

0.1 mm

i .

™ urHiom

TRANSFO R
Lins

READOUT SYSTEM
e s = TRANSFORM

PROACTION
| scammmc LEns : AN

INTENSITY
w - @
o =] (=]

)
L=

TRANSMIT
MASK

LITHIUM
TANTALATE
CAYETAL

COLLIMATING

33 3 37 W 41 43 &5
£/ MMBAX)

v Lithium Tantalate phase shifter
v’ 27V for 2r phase shift

v" 46 Channels
v 633 nm

v' Linear phase progression

X Free-space optics

FINED

x No amplitude control

X Only transmit function (no RX)

POLARIZER

R. Meyer, “Optical beam steering using a multichannel Lithium Tantalate crystal,” Applied Optics, 11(3),

pp. 613 — 616, 1972.
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Phased Array using Locked Lasers
Rockwell, 1979

—

v CO, lasers, 5W, 10 um

LASER
CONTROL

- ] v' 5 Channels
3 ) - v' Phase adjustment through PLL
E | (no optical phase shifter needed)
| osen —
x Free-space optics

ASE
INFORMATION

x Complicated control algorithm

x No amplitude control

...............

|
|- ——| DETECTOR
|

-

X Only transmit function (no RX)

v

CONTROL LASER (N)

onm="1

REFERENCE ’J/
LASER

C. Hayes and W. Davis, “High-power-laser adaptive phased arrays,” Applied Optics, 18(24), pp. 4106 —
4111, Dec 1979.
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Monolithic Laser Scanning Device
XEROX, 1982

VN S v' Hetero-structure injection laser
Y region & optical scanning region
50 2%
* ¥/
v S S v' Element-level phase control
P-GoAs =75 x ——‘ﬁ%{;ﬁ) Ally—l ? {, k4
n-GopxAlAs 94 S 457 . .
W Fore g = - v" Fully monolithic
l
at " “ o x No amplitude control
% . .
6.7 1 x Only transmit function (no RX)
.h; ) (Dr;:frunv '{0'["("‘”/234\"\'“;; il 7 7.
\fo {u’whﬂwmﬁf/# } ) &"L”
1= V&‘l I/x
" [ —_—
0 L= —— ’
o
/4 ]\
2—‘101 [n(n-1)/21 8V ’2'3&’ 2 29
FiG. 17 FlG. 13 JJ

D. Scifres, R. Burnham, W. Streifer, “Monolithic laser scanning device,” US Patent 4360921, Nov 1982.
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Beam-Steering via Wavelength Tuning™
ETH, 1993

v AlGaAs Process

N % v' Waveguide: 3-pym Al, ,:Gag -5
\®< e @; = v'  Substrate: N* 001 GaAs wafer
l .15Ga,85As undo, H@) —
Al 25Ga,75As N-doped
v" 900 nm
Casaliiopd v’ Electro-optical phase shifters

AuGe/Ni/Au

. based on indium tin
oxide/AlGaAs Shottky junctions

x No amplitude control

X Only transmit function (no RX)

Intensity coupled cut, ], [a.u.]

Angle, 845 , [mrad]

F. Vasey, F. Reinhart, R. Houdré, and J. Stauffer, “Spatial optical beam steering with an AlGaAs integrated
phased array,” Applied Optics, 32(18), pp. 3220 — 3232, 1993.
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Beam-Steering via A-tuning in Silicon
IMEC, 2010

v" Silicon Photonics Process
v" Silicon thickness: 220 nm
v' Buried oxide thickness: 2 um

v' 4 x 4 Channels
v" 1550 nm

input waveguide 'z

focusing grating
coupler

X Beam steering via wavelength
tuning only in one direction.

1 X No independent phase control

= = = Measurement O 4x4 OPA
i 1
n

x No amplitude control

%9 x  Only transmit function (no RX)

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-
insulator,” Optics Express, 18(13), 13655-13660, June 2010.
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2D Beam-Steering via ¢-shift & A-tuning”
UCSB, 2011

—

v" Silicon Photonics Process
v" Silicon thickness: 500 nm
v' Buried oxide thickness: 1 um

Grating array \/ 4 X 4 Channels
v" 1550 nm

v' Thermal phase shifters for beam
steering in the lateral axis y

x Beam steering in the longitudinal
axis 0 via wavelength tuning.

x No amplitude control

X Only transmit function (no RX)

J. Doylend, M. Heck, J. Bovington, J. Peters, L. Coldren, and J. Bowers, “Two-dimensional free-space
beam steering with an optical phased array on silicon-on-insulator,” Optics Express, Oct 2011.
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Large-Scale Nanophotonic Phased Array

1T, 2013

el
o
Ta
b
EE

Measured
far field

= v' Silicon Photonics Process
Jﬁ SESS v' 300 mm, 65 nm CMOS foundry
« = Za ot v" Silicon thickness: 220 nm
Actve pirel 3 = e S v Buried oxide thickness: 2 um
s & D 8 x 8 Channels
s SN LTI v 1550 nm
msces | O LA v" Unit cell size: 9 um x 9 pm
I 51 ety copet) I b e 2 e
Thermal phase shifters

R ssres B Fessees : greTTees sl o ¥ Independent for each channel

je f B R b ¥ 85 mW for 180° phase shif

L ©o
o

(gp) Aususyu

]
=k
w

No amplitude control

An entire row/column has the
same phase control signal

Only transmit function (no RX)

J. Sun, E. Timurogan, A. Yaacobi, E. Shah Hosseini, and M. Watts, “Large-scale nanophotonic phased
array,” Nature, pp. 195 - 199, Jan 2013.
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2D Beam-Steering via ¢-shift & A-tuning”

U

1, 2014

\ MMIs

Intensity (A. U.)
oo B 2 o

w
o

0 (degree)

‘\\\TO Phase shifters
*~.and bond pads -~

s

"10

0.9
0.8
0.7
0.6
0.5
04
0.3

1~
r10.1

(o]

v" Silicon Photonics Process
v" Silicon thickness: 250 nm
v' Buried oxide thickness: 3 um

v 16 Channels
v" 1550 nm

v' Thermal phase shifters for beam
steering in the lateral axis g

x Beam steering in the longitudinal
axis 0 via wavelength tuning

x No amplitude control

X Only transmit function (no RX)

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. Chen, “On-chip silicon optical
phased array for two-dimensional beam steering,” Optics Letters, 39(4) 941-944, Feb. 2014.
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2D Beam-Steering via ¢-shift & A-tuning”
UCSB, 2015

.4 |[|vY SOl + Ill-V Photonics Process
Tunable [(WSK\Wp). || Grating
V/ =——= v' Si/BOX thickness: 0.5/ 1 um

Laser ___7—_":_1 Arra
=1 - HH —%‘:‘:—, / /y v'1ll-V epitaxial growth on silicon

:_,—T_.:t ;f_:. | [|v 32 Channels

?;;f;.: v Thermal phase shifters for beam
\ :—-T_f:_:‘.; Photodiode steering in the lateral axis g
==  Array

Channel Amplifiers

6 mm

Modulators

| Il el

v" Amplitude control at each channel

=
>

11.5 mm

v" On-chip photo-detector array for
on-chip array test & calibration

X Beam steering in the longitudinal
axis 6 via wavelength tuning (on-
chip tunable laser).

X Only transmit function (no RX)

J. Hulme, J. Doylend, M. Heck, J. Peters, M. Davenport, J. Bovington, L. Coldren, and J. Bowers, “Fully
integrated hybrid silicon two dimensional beam scanner,” Optics Express, 23 (5), March 2015.
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Outline

B Monolithic Optical Phased Array Transceiver in SOl CMOS
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Optical Phased Array Transceiver

Antenna Bidirectional
Array Beamformer
T P X
(LightIN) Optical
P § I Transmitter
®
. o 2| TR
. o |Switch
T § y |y Optigal
/ RX Receiver
(Light Out)

v' Bidirectional passive beam-forming works in transmit and receive modes.
v' The entire optical beam-former and control electronics can be realized in
a monolithic silicon chip.
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Routing On-Chip Electromagnetic Signals

RF Transmission Line Optical Dielectric Waveguide

145 nm¢ﬁ

1 um Sio2
(BOX)

Frequency Typical Loss Performance Metric Measured
@ A = 1550nm Performance
1 GHz 0.15 dB/mm
Straight Waveguide Loss 1.27 dB/mm
10 GHz 0.3 dB/mm
U-Turn Loss (turn radius = 2 pm) 0.7 dB
100 GHz 1 dB/mm
U-Turn Loss (turn radius =5 pm) 0.2dB

USCViterbi  H. Hashemi IEEE CICC, San Jose, CA September 28-30, 2015
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On-Chip Electromagnetic Splitters

RF Wilkinson Optical Multi-Mode
Splitter/Combiner Interferometer
Port 2 ‘2.75 Hm Out 1
—>
N J
| T Si 1500 nm
J
S
In —_—
1 X2 MMI out 2
Port 3
Frequency | Insertion Loss Footprint Performance Metric Measured
@ A = 1550nm Performance
24 GHz 1.4 dB 120 um x 290 um
Insertion loss 0.3dB
45 GHz 0.6 dB 250 um x 960 um
95 GHz 0.6 dB 250 um x 340 um Footprint 2 pm X 2.75 pm
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On-Chip Electromagnetic Couplers

36

M2

&

I_I_I_I

3 11/2

— Z2 —
Branch Line Coupler

Rat Race Coupler

RF Directional Couplers

Lange Coupler

Optical Directional Coupler

Si

—_—

S _—

Inl

Outl

$G > 260 nm

In2

L,for G=260nm & R =5 pmis 36.4 pm

Out?2
—_—

Frequency | Insertion Loss Footprint Performance Metric Measured
@ A = 1550nm Performance
2.4 GHz 1.7 dB 380 um x 390 um :
L. for 10% coupling 6.1 um
10 GHz 1dB 840 um x 960 um
60 GHz 1dB 120 um x 160 um L. for 50% coupling 18.2 ym
USCViterbi  H. Hashemi

School of Engineering

IEEE CICC, San Jose, CA
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Bidirectional Optical Variable Phase Shifter

B Si (p-) MPoly-Si (p-) MPoly-Si (p+)  Via W Metal layer 1 control bits
* Dimensions are not scaled. \DAC/
cos(o) Silicon Waveguide M}
Performance Metric Measured
@ A = 1550nm Performance
Overall phase shifter length 94.4 pm
P, 27.2 mW
AT, 105 °C
Insertion loss 2.2dB
Heater resistance 1 kQ

v" Propagation velocity is modified by changing the local temperature
(adjusting current passing through an adjacent polysilicon).

v Optical waveguide and heater are meandered to reduce footprint.

v Variable phase shifter can cover 360° phase shift with 27.2 mW power.

USCViterbi  H. Hashemi IEEE CICC, San Jose, CA September 28-30, 2015
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Bidirectional Optical Variable Attenuator

v 2 t+¢/2
cos(mt) ()COS(fb ).cos(mt+¢ )>

o & A N o

=
o

B
o
Phase Response [°]

Amplitude Response [dB]
'I_\ 1
[N

=
=N

'
=
o

0 5 10 15

Burned power inside heater [mW)]

v’ Attenuation is set by adjusting relative phases of two added signals
v' 0° relative phase shift corresponds to zero attenuation
v' 180° relative phase shift corresponds to infinite attenuation

v Relative phase shift is adjusted thermally between optical waveguides of
different lengths.
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Optical Antenna (Grating Coupler)

700 nm FDTD simulation of far-
field radiation pattern

v Simulated radiation efficiency = 50%
v Peak radiation for single optical antenna occurs at around 20°
v’ Larger grating couplers are used for TX and RX ports.

USCViterbi  H. Hashemi IEEE CICC, San Jose, CA September 28-30, 2015



40

Monolithic Optical Phased Array Transceiver

i
|

+ Metal layer 2 u Si (p+
{g_)) i Metal Iazer 1 lTog}m)etaI
Via B Metal layer 3

* Dimensions are not scaled.

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SO CMOS
process,” Optics Express, vol. 23, no. 5, pp. 6509-6519, March 2015.
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Monolithic Optical Phased Array Transceiver”
Chip Microphotograph

% 100 pm
Top Control Metal Lines

p—_
—.---..--ﬂ-l-.-..-.-'—
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Measured Array Performance without Calibration

Phase Profile

B
21T 0

Phase [rad]

Amplitude Profile

R
-3 -1.5 0
Intensity [dB]

Far-Field Pattern

x Phase & amplitude mismatches due to process mismatches even
when all channels have the same setting.
v All arrays must get calibrated during start-up.
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Optical Phased Array TX Measurements’

Phase Profile

Amplitude Profile

2000 O0OOS o000
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o000 OOOS (X N N J
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(LR X ]

Phase [rad]

-20 -10
Intensity [dB]

0

Measure d near field

-20

Simulated far field

Measure d far field

-10
Intensity [dB]

After Calibration

Uniform amplitude distribution
Uniform phase distribution

Gaussian amplitude distribution
|dentical phase settings

Gaussian amplitude distribution
0° / 180° phase in alternate columns

Gaussian amplitude distribution
0°/ 180° phase in alternate rows

Non-uniform amplitude distribution
Non-uniform phase distribution

School of Engineering
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Optical Phased Array RX Measurements'

After Calibration

i3

v' Maximum received power is achieved when all the antennas contribute to
the total collected field with the same phase and amplitude.

v Minimum received power is achieved when the phase of half of the
antennas shifted 180°respect to the other half.

v' 14.5 dB maximum to minimum ratio was measured (peak to null ratio).
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Outline

B Conclusions
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Phased Array Advancements

v" Radio frequency phased arrays
v' Concept: 1900s
v Discrete demonstrations: 1940s
v" Monolithic demonstrations: 2000s
v Applications: electronically scanning radar, wireless communications, etc.

v Optical phased arrays
v' Early demonstrations: 1970s
v" Monolithic demonstrations: 1980s
v Silicon monolithic demonstrations: 2010s
v Applications: lidar, projection, display, holography, optical communications, etc.

Monolithic phased arrays have been proposed/demonstrated for high-speed
iInterconnects (inter-chip, intra-chip, backhaul, etc.), touchless gesture
sensing, endoscopic laser surgery, etc.
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Future

Opportunity to use
1 billion, nano-scale transistors with cut-off frequencies reaching 1 THz
and
ability to manipulate electrons and photons on the same chip
enables
complex integrated systems, such as phased arrays,
with
unprecedented functionality and performance
for

unforeseen applications.
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Appendix
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Phased Array using Locked Lasers
Aerospace Corporation, 1978

FROM WL v" Phase locking all frequencies of
SERVOS {} TO PZTs .
— B (S0 : multi-frequency lasers
PZT}—+{0SCILLATOR | F: Mgl'g)! L [StRvo L -
No. 1 OUTPUT : R .
i — (&0 " || v Phase adjustment through PLL
* : PHOTO - - > i i
e | [PEECTR (vl i (no optical phase shifter needed)
PZI}-+{0SCILLATOR [~ s BTl e KT >
2 — | [L—— ] ] " || x Free-space optics
PZ1 e
FREQUENCY .
gy Mo Zpmalizion—s iy x No amplitude control
P71 s
g m X Only transmit function (no RX)
FREQUENCY
MODULATOR
CONTROL

C. Wang, “Master and slave oscillator array system for very large multiline lasers,” Applied Optics, 17(1),
pp. 83 — 86, Jan 1978.
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Acoustic Phased Arrays
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