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Motivation: mm-Wave SDR 

 Demand for higher data-rates                                                          

 Interference tolerance through beam-forming 
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mm-wave Software Defined Radio is a meaningful proposition. 



Frequency Synthesizer in SDR 
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High-data-rate spectrally-efficient mm-wave Software Defined Radio 

requires low phase- noise wideband frequency synthesizer. 
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Proposed mm-Wave Wideband 

Frequency Synthesizer 
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The frequency synthesizer architecture and frequency planning is 

chosen to minimize power consumption considering transistor fmax, 

phase noise of fref, etc. 
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Frequency Divider Topologies 
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Injection Locked Frequency Divider  
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Injection Locked Frequency Divider  

Locking Range 
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Small injection device: 

 Limited Locking range     Inj/Q    

(Adler phase condition) 

Large injection device: Small Ron 

 Prevent oscillation start-up 

(Gain condition) 

The trade-off limits locking range for a given power consumption. 
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Distributed Injection Locking 
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 Smaller switches with strong injection 

 Wide locking range. 

 Wideband input matching. 
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Operation Principle 
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Optimum Number of Stages 

Slide 12 CICC – San Jose, Sept. 2015 Session: 4-3 

f0

f0

f0/2

VCC

f0/2

f0



Comparison (Simulations) 
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Load Frequency Shifting 
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Schematics 
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Chip Micrograph  
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(GHz) 

Band of interest 

Input Reflection Coefficient  
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Output Spectrum 
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Measured Locked Phase Noise 
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Sensitivity Curve 
(Icore=4 mA, Ibuf=1 mA) 
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Sensitivity Curve 
(Icore=5 mA Ibuf=0.6 mA) 
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Locked 

Pulled 



Sensitivity Curve 
(Icore=2.5 mA, Ibuf=0.6 mA) 
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Performance Summary 
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This Work 
ISSCC  

2007 

ISSCC 

2009 

JSSC  

May 2013 

RFIC  

2012 

JSSC 

October 2013 

Technology 
0.13 µm 

BiCMOS 

0.18 µm  

CMOS 

0.13 µm 

CMOS 

32nm 

CMOS 

65 nm 

CMOS 
65 nm CMOS 

Operation 

Frequency 

(GHz) 

35 - 44 

41 - 60 
37.5 - 49 59.6 - 67 40 - 70 53.7 - 72 53.4 - 79  

Locking 

Range 

Low band: 22% 

High band: 37% 

Total: 53% 

26.6% 11.6% 54%  29% 39% 

Power 

Consumption 

(mW) 

3.8 6 1.6 4.8 1.9 2.9 

Core Area 

(mm2) 
0.07 0.428 0.017 0.001 0.02I 0.126 

Topology Distributed IL Regenerative 
Class-B 

injection 

Latch with 

load 

modulation 

Frequency  

Tracking 

Frequency 

Tracking 



Conclusion 
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 Low power wideband low phase noise frequency 

synthesizer enables mm-wave software defined 

radio. 

 

 Concept of distributed injection locking is 

introduced to increase locking range of frequency 

dividers for a given power consumption. 

 

 Prototype with measured 35-60 GHz locking 

range was implemented in a 130 nm BiCMOS 

SiGe HBT technology. 
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