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Reliability context

Reliability aims at decrease the failure rate requirement
for automotive, consumer, spatial market...

— Decreasing fault occurrence

— Improving process capability or design for reliability

How to optimize the trade-off between reliability,
performance and power?

Innovative solutions: In-situ timing sensors



Context

o Multi mode multi corners approach
— Adding extra margin under worst case conditions
— Huge performance-power-area penalty
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 In-situ timing monitor could eliminate extra margin :
— Provide warning prior to functional failures
— Deal with environmental variations and aging



Contributions to the field

Timing sensors
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Pre-error monltors

 Example 1: Static pre-error detector
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— Check point is placed in the middle IN. Pour 2013]
of the critical-paths

— Pre-error under-estimated if
inserted on the first-half

— Pre-error over-estimated if
Inserted on the second-half
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Outline

Design for in-situ monitors

Insertion flow for in-situ monitors
Benchmark results after P&R
Experimental silicon measurements
Conclusion and prospects



Principle

In-situ monitors principle

— Data is delayed, latched and compared with the original one
— Detection window size is determined by the delay element
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— Delay element : buffer = 30 ps *

*M.Saliva 2015
* Pre-error is high if transition occurs on detection window
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Layout strategies

o Cell-based in-situ monitor
— Need dedicated cell characterization
compatible with industrial back-end
flow
— Optimal footprint area but :
— Difficulty to handle during the flow
— Routing congestion due to cell size

* Flow-based in-situ monitor
— All components come from libraries
_ Schemat_mj |s.erX|bIe | "y Original FF -
— Connectivity is managed during

routing task
— Easy to handle during the flow

— No routing difficulty




* Monitors are inserted after clock tree insertion step

Insertion flow (1/2)

* 5% of worst critical paths identified after clock tree synthesis step
are monitored (dashed line)
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 After routing and optimization

Flow insertion (2/2)
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Benchmark area results

* 10% of critical paths are implemented with ISM
o Circuits
— ITC99 [b19,b15,b14]
— Bose, Ray-choudhury, Hocquenghem (BCH)*  *v.Huard IRPS2014

# of Flip- #ofi in- -Situ Area overhead

36211 2180 39429 4,16%
B14 7405 222 10139 22 2,01%
B15 14194 446 21769 44 3,58%
BCH 8469 869 11614 86 2,46%

- Low area overhead for flow-based ISM
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Benchmark performance

e Timing performance
comparison for ITC circuits &
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Timing performance penalty

e Only for BCH
— Using reference (fresh) and
ageing library
— For different percentage of
critical path with in-situ
monitor insertion
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Experimental results

» Application :18 independent cores of BCH implemented
In 28nm Fully Depleted SOI (FDSOI) at 1GHZ
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Flag warning in multicore

» Decrease Vyp by 1mV for all cores

— First warning occurs at 0,89V

— Vmin = 0,85V whereas sign-off condition (PLL@1GHz , Vmin@0,9V)
— Extra margin of 50mV could be saved

® |P Failure
PLL @ 1GHz s Warning Flag

IP Status: Available Non Available Wl |

1 0.95 0.9 0.85 0.8 0.75 0.7 15
Supply Voltage (V)



Inter tile dispersion

« Path timing analysis
— Measurement of timing slacks for 20 paths in 18 tiles

— Each path slack differs from one tile to another
— Dispersion of timing slacks is due to local variations
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DVFES driven by ISM

« Each Operating Performance Point (OPP) is associated to one condition of
frequency

* Clock frequency varies from 0,27 GHz to 2,3GHz
— For each frequency, the voltage is decreased in order to avoid flags at minimal
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- Ability to find minimum voltage at a given frequency without doing sign-off at
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In-situ monitor and temperature change

« Application of temperature variations
— Monitor flags to each temperature decrease
- Voltage is adjusted accordingly
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—  Support of abrupt temperature change

— Good correlation between supply voltage and temperature
variations



In-situ monitor behavior during ageing

e Aging conditions:
— Dynamic pattern running at-speed (1GHz+)
— V,omt20 and +40% stress voltages and 25/125°C stress temperatures
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Conclusion

In-situ monitor implementation solution is proposed

— Minimum Area overhead

— Limited timing impact

— Industrial implementation

Robustness of coverage investigated

— 40% initial selection of path for ISM insertion is not a blocking point.
— Decision taken after large number of warning alerts

Experimental results are promising
— ISM enables to control temperature, voltage, ageing variation
— ISM enables to anticipate local/global process variation

Prospects
— Investigate the optimal number of ISM inserted
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