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Reliability context

• Reliability aims at decrease the failure rate requirement 
for automotive, consumer, spatial market…
− Decreasing fault occurrence 
− Improving process capability or design for reliability  

• How to optimize the trade-off between reliability, 
performance and power?

• Innovative solutions: In-situ timing sensors
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• Multi mode multi corners approach
– Adding extra margin under worst case conditions

→ Huge performance-power-area penalty

• In-situ timing monitor could eliminate extra margin : 
– Provide warning prior to functional failures
– Deal with environmental variations and aging
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Contributions to the field
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Timing sensors
In-situ Ex-situ

Ring 
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Critical path 
replica

Error detectionPre-error detection

• Static pre-error 
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• Dynamic pre-error 
detector 1

• Crystal-ball circuit 2

• transition detector3

• Step circuit 4

• Slack Probe technique5

• Razor circuit 6

• Timber circuit 7

• Stability checker 
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• Sampling data 
detector9

• Double sampling with 
time borrowing10

• Sense amplifier 
detector11

• Path-based 
ring oscillator13
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Pre-error monitors
• Example 1: Static pre-error detector 

– Aging sensor: pre-error detection
– Detected transition close to rising 

edge of clock
– It detects also the activity on data 

path.
• Example 2: transition detector

– Check point is placed in the middle 
of the critical-paths

→ Pre-error under-estimated if 
inserted on the  first-half

→ Pre-error over-estimated if 
inserted on the second-half

– Error signal if transition occurs after 
failing edge of clock 

→ lack of pre-error prediction
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Outline

• Design for in-situ monitors
• Insertion flow for in-situ monitors
• Benchmark results after P&R
• Experimental silicon measurements
• Conclusion and prospects
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In-situ monitors principle
Principle

– Data is delayed, latched and compared with the original one 
– Detection window size is determined by the delay element 

– Delay element : buffer = 30 ps *            *M.Saliva 2015

• Pre-error is high if transition occurs on detection window  
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Layout strategies
• Cell-based in-situ monitor

– Need dedicated cell characterization 
compatible with industrial back-end 
flow

– Optimal footprint area but :
→ Difficulty to handle during the flow
→ Routing congestion due to cell size

• Flow-based in-situ monitor
– All components come from libraries
– Schematic is flexible
– Connectivity is managed during 

routing task
→Easy to handle during the flow
→No routing difficulty 
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Insertion flow (1/2)
• Monitors are inserted after clock tree insertion step 
• 5% of worst critical paths identified after clock tree synthesis step  

are monitored (dashed line)
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• After routing and optimization 
step 
– Path to monitor flop are false path 

→ No penalty for original 
paths 

– 40% of initial paths monitored are 
inside 5% of critical paths 
considered

– Path ranking change is due to routing 
optimization (setup, hold) 

• Critical Path coverage
– During long term application the 

probability to activate monitored 
path is high →→→→ coverage during 
stress is guaranteed
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Benchmark area results
• 10% of critical paths are implemented with ISM
• Circuits 

– ITC99 [b19,b15,b14]
– Bose, Ray-choudhury, Hocquenghem (BCH)*      *V.Huard IRPS2014

→ Low area overhead for flow-based ISM
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# of gates 
# of Flip-

Flop
Area [µm2]

# of in-situ
monitor

Area overhead  
[%]

B19 36211 2180 39429 218 4,16%

B14 7405 222 10139 22 2,01%

B15 14194 446 21769 44 3,58%

BCH 8469 869 11614 86 2,46%
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Benchmark performance
• Timing performance 

comparison for ITC circuits & 
BCH
– Using fresh libraries and  

different ageing libraries

– Using flow-based In-situ monitor 
for 10% of critical paths 

– Using cell-based In-situ monitor 
(only for BCH) 

→ More penalty performance for ageing 
library comparing to in-situ monitor 
(flow-based) 
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Timing performance penalty
• Only for BCH

− Using reference (fresh) and 
ageing library

− For different  percentage of 
critical path with  in-situ 

monitor insertion
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→ Performance penalty is slightly impacted with high number of in-situ 
monitor



Experimental results
• Application :18 independent cores of BCH implemented 

in 28nm Fully Depleted SOI (FDSOI) at 1GHZ
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1mV regulation step
PLL at 2.3GHz
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Variations
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Supply voltage

Margin reduction by
voltage control loop

ISM delay

Nominal Minimum Voltage

Aging• Voltage regulation with 1mV 
step after first flag appearance



Flag warning in multicore
• Decrease VDD by 1mV for all cores 

– First warning occurs at 0,89V
– Vmin = 0,85V whereas sign-off condition (PLL@1GHz , Vmin@0,9V) 

→ Extra margin of 50mV could be saved 
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Inter tile dispersion
• Path timing analysis

– Measurement of timing slacks for 20 paths in 18 tiles
→ Each path slack differs from one tile to another 
→ Dispersion of timing slacks is  due to local variations

→ Ability for in-situ monitors to cope with local variation 16



DVFS driven by ISM
• Each Operating Performance Point (OPP) is associated  to one condition of 

frequency
• Clock frequency varies from 0,27 GHz to 2,3GHz 

– For each frequency, the voltage is decreased in order to avoid flags at minimal 
voltage

→ Ability to find minimum voltage at a given frequency without doing sign-off at   
each OPP   
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In-situ monitor and temperature change
• Application of temperature variations

– Monitor flags to each temperature decrease
→ Voltage is adjusted accordingly 

– Support of abrupt temperature change
– Good correlation between supply voltage and temperature   

variations 18



In-situ monitor behavior during ageing

• Aging conditions:
– Dynamic pattern running at-speed (1GHz+)
– Vnom+20 and +40% stress voltages and 25/125°C stress temperatures

• Good correlation between BCH Fmax and Flag Fmax
19
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Conclusion

• In-situ monitor implementation solution is proposed
– Minimum Area overhead 
– Limited timing impact
– Industrial implementation

• Robustness of coverage investigated 
– 40% initial selection of path for ISM insertion is not a blocking point. 
– Decision taken after large number of warning alerts 

• Experimental results are promising
– ISM enables to control temperature, voltage, ageing variation
– ISM enables to anticipate local/global process variation

• Prospects
– Investigate the optimal number of ISM inserted
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