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Wireless IMD Applications 

 Treat neurological diseases (e.g. DBS) or substitute sensory  
   modalities (retinal/cochlear implant), high power, large volume 
 

 Battery-powered chest-mounted DBS 
   Head-mounted DBS with wireless power transfer 
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IMD: Implantable Medical Device 
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Wireless IMD Applications 

Head-mounted DBS with wireless power transfer 
Cochlear Implant 
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 Size/weight of batteries affect animal movements and behavior. 
 

   Wireless power transmission via inductive links 
 

 Inductively powered IMDs for long-term uninterrupted 
electrophysiology experiments on small freely moving animal. 

Wireless IMD Applications 
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Wireless Power Transmission Efficiency 

With higher IMD power efficiency from the secondary coil 
to the tissue: 
The IMD can operate with lower received power from a 

further coil distance (small coils implanted deep in the body). 
Small power consumption in IMDs reduces the risk of     

tissue damage from heating and interference. 

Jow and Ghovanloo, TBioCAS’07 

IMD: Implantable Medical Device 
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Wirelessly-Powered IMD Structure 

Various WPT techniques in every stage of power flow: 
 

 Wireless power transmission link (across the skin) 
 Matching and adaptive Q-modulation (inside the body) 
 Power management units (inside the body) 
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Outline 
• Optimized Wireless Power Transfer Links 
• Power Conversion and Management Circuits 
• Low-Power Wireless Data Telemetry 
• Conclusions 
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Outline 
• Optimized Wireless Power Transfer Links 
      - Conventional 2-Coil Inductive Links 
      - Multi-Coil (3-Coil) Inductive Links 
      - Q-Modulation Concept 
      - Q-Modulation Power Management (QMPM) 
• Power Conversion and Management Circuits 
• Low-Power Wireless Data Telemetry 
• Conclusion 
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Power Transfer Efficiency (PTE) in 2-Coil 
Inductive Links 

• PTE is highly dependent on:  k23, Q2, Q3, QL (load Q)   

• The 2-coil power transfer efficiency (PTE): 

  

Q3L = Q3QL / (Q3+QL) 

R.R. Harrison, ISCAS 2007 

QL = RL / ω0L  

M. Baker and R. Sarpeshkar, TBioCAS 2007  
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• Large RL (QL): Low efficiency in the secondary loop 
• Small RL (QL): Low efficiency in the primary loop 
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Maximizing PTE and PDL in 2-Coil Link 
Parameter Sym Sim 

L1 

Inductance (µH) L1 1.2 
Outer diameter (cm) Do1 27 

Fill factor Φ1 0.28 
Num. of turns n1 2 

Line width (mm) w1 12 
Line spacing (mm) s1 35 

Quality factor Q1 196 

L2 

Inductance (µH) L2 0.058 
Coil diameter (cm) Do2 4 

Wire diameter (mm) w2 5.68 
Num. of turns n2 1 

Line spacing (μm) s2 100 
Quality factor Q2 151.5 

coupling distance   (mm) d12 50 
coupling coefficient k12 0.032 

Power transfer efficiency 
(%) PTE 72.0 

Power delivered to load 
(mW) PDL 215.3 

• PTE and PDL are highly dependent on RL • RL is often predefined  
Impedance 

Transformation 
1) Matching circuits     2) Multiple coils  

 RL,PTE = 200 Ω 

Kiani, Jow, and Ghovanloo, TBioCAS 2011 
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Maximizing PTE in 2-Coil Inductive Links 

• RL is often defined by the application 
Impedance 

Transformation 
1) Matching circuits               2) Multiple coils  
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• An optimal load, RL,PTE, to 

maximize the PTE 

 More efficient (Q > 200) 
 Easy to match the load 
 Larger size & not tunable 

 More lossy (multiple L & C 
with Q < 100) 

 Smaller size and tunable 
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3-Coil Inductive Links for Load Matching 
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M. Kiani and M. Ghovanloo, TBioCAS 2011 
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Maximizing PTE in 3-Coil Link 

By changing k34 
(and Rref,3), the  
3-coil PTE can be 
kept at maximum 
for a wide range 
of RL. 

A 2-coil link does not provide this flexibility, and PTE maximizes 
only for a specific RL value. 

M. Kiani and M. Ghovanloo, TBioCAS 2011 
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3-Coil Inductive Links for Load Matching 
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not adjustable during operation! 
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A Q-Modulation Based Inductive Power 
Transmission Link 
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Q-Modulation Inductive Link 
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PTE Comparison between 3-Coil and 
Q-Modulation Inductive WPT Links 
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Q-Modulation Power Management (QMPM)  

M. Kiani, et al., ISSCC/JSSC 2015 
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Q-Modulation Measurement Results:  
Load Variation 

With Q-modulation, PTE increases by 2x at RL = 200 Ω!  

M. Kiani, et al., ISSCC/JSSC 2015 
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QMPM Die Micrograph & Benchmarking  
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Outline 
• Optimized Wireless Power Transfer Links 
• Power Conversion and Management Circuits 
      - Active AC-DC Converter 
      - Reconfigurable AC-DC converter 
      - Adaptive Regulating Rectifier 
      - Wireless Capacitor Charger 
• Low-Power Wireless Data Telemetry 
• Conclusion 
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Inductively-Powered IMD Structure 

 Comparator-based Active AC-DC converters enable high 
power conversion efficiency (PCE) and low dropout voltage. 
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Full-Wave Active Rectifier 

+

-

SC

VREC

VSS

VIN1

VB1 VB2

VIN2

L2

C2

CTL0:3

P1 P2

P3

P4

P5

P6

N1 N2N3 N4

CMP2

SC

Comparator

+

-

CTL0:3

CMP1

Comparator

44

 Rectifying switches are driven by offset-controlled high-
speed comparators at 13.56MHz ISM band. 
 Offset-control blocks inject offset currents to compensate for 

both turn-on and turn-off delays. 
 High measured PCE of 80.2% with 3.12V DC for 0.5kΩ load. 
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[Full-wave active rectifier] [Offset-controlled comparator] 

Lee and Ghovanloo, TCAS-I 2011 
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 Comparator-based active voltage doubler for high output 
voltage and high PCE @ 13.56MHz. 
 PCE = 79% with 2.4V DC for 1kΩ load from 1.46V AC input. 
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Reconfigurable AC-DC Converter 
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Combining two AC-DC mechanisms into a single circuit: 
 VD/REC combines two AC-to-DC converters, i.e. a full-

wave rectifier and a voltage doubler, into a single circuit. 
 Active diodes driven by high-speed comparators lead to 

low dropout and high PCE in both VD and REC. 

Lee and Ghovanloo, ISSCC 2012 
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 Adaptive mode control for rectification or voltage doubling 
 Extended-range inductive power transmission 
 High PCE (70% VD / 77% REC) with active diodes 
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Power Transmission Range 

 VD/REC extends power transmission range by 33% (6cm to 
   8cm) in coil distance and 41.5% (53° to 75°) in coil orientation, 
   compared to using the rectifier only. 
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Adaptive Regulating Rectifier 

 

Reg. AC-DCAC-DC Regulator

+ =

H. Lee et al. JSSC 2013 

Combining AC-DC conversion and DC regulation into a 
single structure: 
 Adaptive regulating rectifier combines an AC-DC converter 

and a regulator into a single structure 
 Area & power-efficiency one-step power conversion/regulation 
 Overall PCE up to 87% at 2MHz without using regulators 
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Adaptive Regulating Rectifier Concept 

VIN(AC)

VREC

REC turn-on

- VREC depends on 
peak of VIN(AC)

- Adjustable VREC
- High PCE

REC turn-on

Max. turn-on time Turn-on phase control

 VREC
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 Conventional rectifier: 
 - VREC depends on peak of VIN(AC)  VREC is not adjustable. 
 

 Proposed adaptive regulating rectifier: 
   - Turn-off timing control  VREC is adjustable. 
   - High PCE with small voltage drop between VREC and VIN(AC). 

[Conventional rectifier] [Proposed adaptive 
regulating rectifier] 
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Rectifier Phase Control Feedback 

 Phase control feedback can be added to the conventional 
comparator to control the rectifier turn-off time.  
 Phase control feedback turns off the rectifier after a variable 

time delay to adjust VREC for a target output voltage.  
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H. Lee et al. JSSC 2013 
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Regulating Rectifier Waveforms & PCE 
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When the peak input voltage is constant at 5V: 
 The regulating rectifier generates adjustable VREC from 2.5V 

to 4.6V (3-bit) by adjusting the rectifier turn-on phase.  
 The regulating rectifier still achieves high PCE of 72~87% at 

2MHz when VREC = 2.5~4.6V and IOUT = 2.8mA.  



32 

L1

C1
M

Po
w

er
 T

x &
 C

trl

Sk
in

L2

C2

VCOIL

GND

Inductive
Link

Adap. Cap. 
Tuner

Cap. 
Charger

Pos/Neg 
Cap. Bank

ICH

+ -

Charge
Injection 
Cap (CS)  

VIN

Efficient Wireless Capacitor Charger 

 Direct pos/neg capacitor charging from AC coil voltage (VCOIL)  

 A charge injection capacitor (CS) & a capacitor charger 
switch generate a fixed amount of charging current (ICH).  

 Fixed ICH reduces switching loss, while CS does not dissipate 
power, maximizing capacitor charging efficiency (82% @ ±2V). 

Lee and Ghovanloo, TCAS-II 2013 
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Wireless Capacitor Charger Operation 

 Direct pos/neg capacitor charging from AC coil voltage (VCOIL)  

 A charge injection capacitor (CS) & a capacitor charger 
switch generate a fixed amount of charging current (ICH).  

 Fixed ICH reduces switching loss, while CS does not dissipate 
power, maximizing capacitor charging efficiency (82% @ ±2V). 
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 A charge injection capacitor (CS) & a capacitor charger 
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Wireless Capacitor Charger Operation 
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Dual-Control Wireless Capacitor Charger 

Dual-voltage control capability for separately charging 
pos/neg capacitors to their designated target voltages 

Capacitor reset function  
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Lee and Ghovanloo, TCAS-II 2013 
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Adaptive Resonant Capacitor Tuner 
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Effective resonance capacitance varies during charging.  
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Adaptive Capacitor Tuner Waveforms 

 During charging, resonant capacitance variation decreases 
the VCOIL amplitude, limiting the proper charging operation. 
 An adaptive capacitor tuner keeps VCOIL amplitude constant.  

[Adaptive cap. tuner activated] [Adaptive cap. tuner deactivated] 
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Capacitor Charging Efficiency & Time 

 With 2.7V peak AC input at 2MHz, a pair of 1μF capacitor 
can be charged up to ±2V in 420μs, achieving high 
measured charging efficiency of 82%. 
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Outline 
• Optimized Wireless Power Transfer Links 
• Power Conversion and Management Circuits 
• Low-Power Wireless Data Telemetry 
      - Pulse Delay Modulation (PDM) 
      - PDM Transceiver 
      - PDM Measurement Results 
• Conclusion 
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Dual-Band Data/Power Transmission 
Using Two Pairs of Coils 
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Jow and Ghovanloo, TBioCAS 2010 

Simard and Sawan S. Kelly et al. and W. Liu et al. 
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Pulse Delay Modulation (PDM) using a 
Dual-Band Power/Data Link  

• Pulse-Based data transmission using a separate data link by 
modulating the zero-crossings of the undesired power carrier 
interference across L4C4-tank with short decaying ringing. 

Kiani and Ghovanloo, TBioCAS in Press 
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PDM Simulation in MATLAB 

 Zero-crossing timing shift = 2.5 ns        
 Signal-to-Interference Ratio (SIR) = -18.5 dB        
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Fully-integrated PDM-based Transceiver 
Diagram 

Kiani and Ghovanloo, TBioCAS in Press 
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PDM Implementation and Test Setup 

• Std. CMOS 
TSMC 0.35-µm 

• Supply volt. = 
1.8 V  

• Operating freq. 
= 13.56 MHz 
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PDM Measurement Results 

• Data rate = 13.56 Mbps 
• Distance = 10 mm 
• Power carrier = 13.56 MHz 

• SIR = -18.5 dB 
• Delivered power = 42 mW 
• Bit error rate (BER) = 4.3×10-7 
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PDM Measurement Results 
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PDM Benchmarking 
• PDM advantages: 
 Low-power consumption of data transceiver  
 Robustness against power carrier interference 
 First inductively-powered pulse-based transceiver 
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Conclusions 
 Various wireless power and data transfer techniques can be 

utilized to power up and communicate with IMDs. 

 The wireless power transfer consists of several stages, such 
as the power Tx, inductive link, matching circuit, power 
conversion and management units.  

 Every stage offers the designer with several degrees of 
freedom and design parameters, which need to be optimally 
combined by considering designated specifications. 

 Low-power wireless data telemetry with simultaneous power 
interference are important in information-heavy IMDs, in which 
high performance is desired despite limited received power. 
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