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 More and more replicated circuit components are integrated on

the chip

Motivation
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 Yield requirement: the failure rate of the replicated circuit

component must be extremely small

 Time to market: fast statistical tools are highly desired to 

accurately analyze the rare failure event

Motivation

Assumptions:

1. 1 million cells

2. No ECC

3. No redundancy

4. Only cells fail
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 Importance sampling (e.g., MIS, MNIS)

 Statistical blockade (SB)

 Integration based techniques (e.g., NMC, M-C)

Motivation

[MIS] R. Kanj, R. Joshi and S. Nassif, “Mixture importance sampling and its application to the

analysis of SRAM designs in the presence of rare failure events,” in DAC, pp. 69-72, 2006.

[MNIS] M. Qazi, M. Tikekar, L. Dolecek, D. Shah and A. Chandrakasan, “Loop flattening &

spherical sampling: highly efficient model reduction techniques for SRAM yield analysis,” in

DATE, pp. 801-806, 2008.

[SB] A. Singhee and R. Rutenbar, “Statistical blockade: very fast statistical simulation and

modeling of rare circuit events, and its application to memory design,” in IEEE TCAD, vol. 28, no.

8, pp. 1176-1189, Aug. 2009.

[NMC] C. Gu and J. Roychowdhury, “An efficient, fully nonlinear, variability aware non-Monte-

Carlo yield estimation procedure with applications to SRAM cells and ring oscillators,” in ASP-

DAC, pp. 754-761, 2008.

[M-C] R. Kanj, R. Joshi, Z. Li, J. Hayes and S. Nassif, “Yield estimation via multi-cones,” in DAC,

pp. 1107-1112, 2012.

Traditional Techniques for Low-D Variation Space
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 Rare failure event analysis in a high-dimensional space

becomes more and more important [SSS]-[SUS]

 Dynamic SRAM bit cell stability related to peripherals

 Rare failure event analysis for other circuits, e.g., SA, DFF

 Scaled-sigma sampling (SSS): can analyze both continuous

and discrete performances of interest

 E.g., DFF delay, SA output

 Subset simulation (SUS): can only analyze continuous

performances of interest

 E.g., DFF delay

Motivation

[SSS] S. Sun, X. Li, H. Liu, K. Luo and B. Gu, “Fast statistical analysis of rare circuit failure events

via scaled-sigma sampling for high-dimensional variation space,” in ICCAD, pp. 478-485, 2013.

[SUS] S. Sun and X. Li, “Fast statistical analysis of rare circuit failure events via subset simulation

in high-dimensional variation space,” in ICCAD, pp. 324-331, 2014.

Traditional Techniques for High-D Variation Space



Slide 6

Background

 Idea: increase the standard deviation (i.e., σ) of f(x) to

easily reach the failure region (i.e., Ω)

f(x) : original PDF Pf : failure rate by sampling f(x)

g(x) : PDF after scaling σ Pg : failure rate by sampling g(x)

x
0

Ω

f(x) σ

x

g(x)

Ω

0

Traditional Scaled-Sigma Sampling – Overview

[SSS] S. Sun, X. Li, H. Liu, K. Luo and B. Gu, “Fast statistical analysis of rare circuit failure events

via scaled-sigma sampling for high-dimensional variation space,” in ICCAD, pp. 478-485, 2013.

σg = s ∙ σf
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 Idea: choose several scaling factors, estimate their scaled

failure rates Pg, and fit the curve

Background

θ : [α β γ]T

D : simulation data

s

Pg

s1 s2 s3

Pf

 max pdf
θ

D θ

Maximum-likelihood estimation:

Traditional Scaled-Sigma Sampling – Overview

 expfP   

    2
log loggP s

s


    

Failure rate estimation:
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Background

    2
log loggP s

s


    

• α and β strongly depend on the dimensionality of x, but 

weakly depend on Ω

• γ strongly depends on Ω

s
s =1

Pg

Pf

s1 s2 s3

Traditional Scaled-Sigma Sampling – Overview

[BSSS] S. Sun and X. Li, “Fast statistical analysis of rare circuit failure events via Bayesian scaled-

sigma sampling for high-dimensional variation space,” in CICC, 2015.
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Background

• Yield estimation is performed at each design

verification step

• Assume that SSS is applied in yield estimation

Pass?
Design 

Verification
2nd Design

Pass?
Design 

Verification
1st Design Done

Yes

No

Done
Yes

No
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Background

 BSSS is proposed to utilize the “similarity” between 

different SSS models fitted at different design stages

1st Design 2nd Design

SSS SSS

Similar

[α1 β1 γ1] [α2 β2 γ2]

• α and β strongly depend on the 

dimensionality of x

• γ strongly depends on Ω
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Outline

 Motivation

 Background

 Bayesian Scaled-Sigma Sampling

 Case Study

 Conclusions
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Bayesian Scaled−Sigma Sampling (BSSS)

 BSSS formulates a maximum-a-posteriori (MAP) estimation

θ : [α β γ]T

D : simulation data

s

Pg

s1 s2 s3

Pf

     max pdf pdf pdf 
θ

θ D D θ θ

likelihood prior

BSSS

SSS

 max pdf
θ

D θ

likelihood

[MAP] X. Li, F. Wang, S. Sun and C. Gu, "Bayesian model fusion: a statistical framework for

efficient pre-silicon validation and post-silicon tuning of complex analog and mixed-signal

circuits," in ICCAD, pp. 795-802, 2013.

MLE

MAP
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 How to define prior?

 Assume that the SSS model for the 1st design is known, and we are 

learning the SSS model for the 2nd design

Bayesian Scaled−Sigma Sampling (BSSS)

1st Design 2nd Design

SSS SSS

θ1 = [α1 β1 γ1] θ2 =[α2 β2 γ2]
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Bayesian Scaled−Sigma Sampling (BSSS)

 How to define prior?

 Assume that three model coefficients are independent. Correlation 

information will be further learned by MAP estimation

 Define α2 and β2 as Normal random variables

 Solve σα and σβ by MLE

 

 

2

2 1

2

2 1

~ ,

~ ,

N

N





  

  

 
,

max ,pdf
 

 
 

 D

α2 / β2
α1 / β1

       2 2 2 2pdf pdf pdf pdf    θ
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Bayesian Scaled−Sigma Sampling (BSSS)

 How to define prior?

 Assume that three model coefficients are independent. Correlation 

information will be further learned by MAP estimation

 Define γ2 as a uniform random variable (non-informative prior)

 l is set to a very small number, u is set to a very large number

       2 2 2 2pdf pdf pdf pdf    θ

 2 ~ ,U l u γ2
l u
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Bayesian Scaled−Sigma Sampling (BSSS)

 Algorithm Flow

1. Given α1 and β1 from the previous design, l, and u

2. Collect simulation data D

3. Solve σα and σβ by MLE

4. Form the prior distribution

5. Estimate θ2 = [α2 β2 γ2]

6. Calculate the failure rate Pf

   
2

2 2max pdf pdf
θ

D θ θ

 2 2expfP   

 
,

max ,pdf
 

 
 

 D

       

     

2 2 2 2

2 2

2 1 2 1 2~ , ~ , ~ ,

pdf pdf pdf pdf

N N U l u 

  

      

  θ
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Outline

 Motivation

 Background

 Bayesian Scaled-Sigma Sampling

 Case Study

 Conclusions
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Case Study

 Designed in 45nm CMOS process

 Each transistor is composed of several multipliers

 4 independent variables are used to model process variations for each 

multiplier

 Initially, BL is set to 1.1V, and BLB is 1.2V. If the output of 

SA is 0, SA is considered as “PASS”. Otherwise, “FAIL”

BL sensing 

block

BL BLB

Sense amplifier (SA) block

Control

signal

Output
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Case Study

 Four different methods are implemented:

1. MC (brute-force Monte Carlo)

 Provide the golden failure rate

2. MNIS (traditional importance sampling)

 2000 simulations are used to find the importance distribution

3. SSS (traditional scaled-sigma sampling)

 5 scaling factors are empirically chosen

4. BSSS (proposed)

 Use the same simulation data as SSS

[MNIS] M. Qazi, M. Tikekar, L. Dolecek, D. Shah and A. Chandrakasan, “Loop flattening &

spherical sampling: highly efficient model reduction techniques for SRAM yield analysis,” in DATE,

pp. 801-806, 2008.

[SSS] S. Sun, X. Li, H. Liu, K. Luo and B. Gu, “Fast statistical analysis of rare circuit failure events

via scaled-sigma sampling for high-dimensional variation space,” in ICCAD, pp. 478-485, 2013.
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Case Study

 536 independent random variables for the 1st SA design

 The estimated failure rate by SSS with 104 samples is

7.3×10−5

 We need to tune the 1st SA design to improve its performance

BL sensing 

block

BL BLB

Sense amplifier (SA) block

Control

signal

Output
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Case Study

 A 2nd SA design is tuned from the 1st design

 552 independent random variables for the 2nd SA design

 The “golden” failure rate estimated by MC with 3.5×106

samples is 7.1×10−6

6000 7000 8000 9000 10000

-14

-12

-10

-8

-6

-4

# of Simulations

lo
g 1

0
(P

f ) BSSSSSS

MNIS

Golden failure rate

95% confidence 

intervals are compared
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Conclusions

 A novel BSSS method is proposed to accurately estimate the

rare failure rates for nanoscale ICs in a high-D space

 BSSS extends SSS by using the “similarity” between

different SSS models fitted at different design stages

 SA is used to demonstrate the proposed BSSS method

 The dimensionality of the variation space is more than a few hundred

 BSSS achieves superior estimation accuracy over traditional MNIS

and SSS
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Thank You!
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Background

    2
log loggP s

s


    

Ω : failure region

M : # of parameters

x(k) : a hyper-rectangular in Ω

∆x : the volume of a hyper-rectangular 

T : # of dominant hyper-rectangular

May not change a lot 

after changing Ω

Can change a lot 

after changing Ω

s
s =1

Pg

Pf

s1 s2 s3

 

  

/2
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x

x

Traditional Scaled-Sigma Sampling – Overview
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Case Study

 The golden failure rate of the 2nd design is 7.1×10−6 which

is estimated by MC with 3.5×106 random samples

# of Sims 6000 7000 8000 9000 10000

MNIS

Pf
L 0 0 0 0 0

Pf 1.5×10−15 1.2×10−15 1.1×10−13 4.1×10−13 3.6×10−13

Pf
U 3.1×10−15 2.5×10−15 3.1×10−13 1.1×10−12 9.2×10−13

SSS

Pf
L 9.0×10−7 9.4×10−7 6.2×10−7 4.5×10−7 5.1×10−7

Pf 4.4×10−5 3.8×10−5 2.0×10−5 1.1×10−5 1.0×10−5

Pf
U 2.3×10−4 2.0×10−4 1.7×10−4 8.8×10−5 7.9×10−5

BSSS

Pf
L 2.4×10−6 1.8×10−6 1.7×10−6 1.5×10−6 1.5×10−6

Pf 1.3×10−5 9.0×10−6 8.0×10−6 7.0×10−6 6.2×10−6

Pf
U 4.8×10−5 4.1×10−5 2.8×10−5 2.4×10−5 2.0×10−5

Table 1. Failure rate and 95% CI [Pf
L, Pf

U]. Golden Pf is 7.1×10−6


