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Assumptions:

1. 1 million cells
2. No ECC

3. No redundancy
4. Only cells fail

m Time to market: fast statistical tools are highly desired to
accurately analyze the rare failure event

m Yield requirement: the failure rate of the replicated circuit
component must be extremely small
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Traditional Techniques for Low-D Variation Space

m Importance sampling (e.g., MIS, MNIS)

m Statistical blockade (SB)
m Integration based techniques (e.g., NMC, M-C)

[MIS] R. Kanj, R. Joshi and S. Nassif, “Mixture importance sampling and its application to the
analysis of SRAM designs in the presence of rare failure events,” in DAC, pp. 69-72, 2006.

[MNIS] M. Qazi, M. Tikekar, L. Dolecek, D. Shah and A. Chandrakasan, “Loop flattening &
spherical sampling: highly efficient model reduction techniques for SRAM vyield analysis,” in
DATE, pp. 801-806, 2008.

[SB] A. Singhee and R. Rutenbar, “Statistical blockade: very fast statistical simulation and
modeling of rare circuit events, and its application to memory design,” in IEEE TCAD, vol. 28, no.
8, pp. 1176-1189, Aug. 20009.

[NMC] C. Gu and J. Roychowdhury, “An efficient, fully nonlinear, variability aware non-Monte-
Carlo yield estimation procedure with applications to SRAM cells and ring oscillators,” in ASP-
DAC, pp. 754-761, 2008.

[M-C] R. Kanj, R. Joshi, Z. Li, J. Hayes and S. Nassif, “Yield estimation via multi-cones,” in DAC,
pp. 1107-1112, 2012.
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Traditional Techniques for High-D Variation Space

m Rare failure event analysis in a high-dimensional space
becomes more and more important [SSS]-[SUS]
~ Dynamic SRAM bit cell stability related to peripherals
~ Rare failure event analysis for other circuits, e.g., SA, DFF

m Scaled-sigma sampling (SSS): can analyze both continuous
and discrete performances of interest
N E.g., DFF delay, SA output

m Subset simulation (SUS): can only analyze continuous
performances of interest
< E.g., DFF delay

[SSS] S. Sun, X. Li, H. Liu, K. Luo and B. Gu, “Fast statistical analysis of rare circuit failure events
via scaled-sigma sampling for high-dimensional variation space,” in ICCAD, pp. 478-485, 2013.
[SUS] S. Sun and X. Li, “Fast statistical analysis of rare circuit failure events via subset simulation
in high-dimensional variation space,” in ICCAD, pp. 324-331, 2014.
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Background

Traditional Scaled-Sigma Sampling — Overview

m ldea: increase the standard deviation (i.e., o) of f(x) to
easily reach the failure region (i.e., Q)
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Gg == Gf
f(x) :original PDF P, : failure rate by sampling f(x)
g(x) :PDF afterscalingo P, :failure rate by sampling g(x)

[SSS] S. Sun, X. Li, H. Liu, K. Luo and B. Gu, “Fast statistical analysis of rare circuit failure events
via scaled-sigma sampling for high-dimensional variation space,” in ICCAD, pp. 478-485, 2013.
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Background

Traditional Scaled-Sigma Sampling — Overview

m ldea: choose several scaling factors, estimate their scaled
failure rates P, and fit the curve

0 :[a B Iog(Pg)za+ﬁ.|og(s)+lz

S
D :simulation data _ o -
Maximum-likelihood estimation:

max pdf (Do)

Failure rate estimation:

>$S P, =exp(a+y)
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Background

Traditional Scaled-Sigma Sampling — Overview

L | | >
S=1s;S, S, >

e a and g strongly depend on the dimensionality of x, but

weakly depend on Q

 ystrongly depends on Q

[BSSS] S. Sun and X. Li, “Fast statistical analysis of rare circuit failure events via Bayesian scaled-
sigma sampling for high-dimensional variation space,” in CICC, 2015.
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Background
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* Yield estimation is performed at each design
verification step

« Assume that SSS is applied in yield estimation
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Background

1st Design —1 2nd Design ——>eoee

* o and g strongly depend on the

dimensionality of x

y strongly depends on Q

Similar ® o o

m BSSS is proposed to utilize the “similarity” between
different SSS models fitted at different design stages
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m Bayesian Scaled-Sigma Sampling
m Case Study

m Conclusions
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Bayesian Scaled-Sigma Sampling (BSSS)

m BSSS formulates a maximum-a-posteriori (MAP) estimation

0 :fa f T -
L Py max pdf (D|0)
D : simulation data 9 ] MLE
likelihood
i BSSS
|
o7 : max pdf (8]D) cc pdf (D|6)- pdf (8)
MAP likelihood  prior

[MAP] X. Li, F. Wang, S. Sun and C. Gu, "Bayesian model fusion: a statistical framework for
efficient pre-silicon validation and post-silicon tuning of complex analog and mixed-signal
circuits," in ICCAD, pp. 795-802, 2013.
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Bayesian Scaled-Sigma Sampling (BSSS)

m How to define prior?

N Assume that the SSS model for the 1st design is known, and we are
learning the SSS model for the 2nd design

1st Design  ——{ 2nd Design
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Bayesian Scaled-Sigma Sampling (BSSS)

m How to define prior?

N Assume that three model coefficients are independent. Correlation
information will be further learned by MAP estimation

pdf (8,) = pdf (,)- pdf (B,)- pdf (1)

~ Define a, and g, as Normal random variables

a2~N(a1,c7§) ﬁ\
182~N(131’02) : >0, | 5,

ay | py
~ Solve g, and o, by MLE
max pdf (D Ga,Gﬂ)
0u:0p

Slide 14



Bayesian Scaled-Sigma Sampling (BSSS)

m How to define prior?

N Assume that three model coefficients are independent. Correlation
information will be further learned by MAP estimation

pdf (8,) = pdf (,)- pdf (B,)- pdf (1)

N Define y, as a uniform random variable (non-informative prior)

7/2~U(|’u) >,
I u

| is set to a very small number, u is set to a very large number
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Bayesian Scaled-Sigma Sampling (BSSS)

m Algorithm Flow

1. Given a, and p, from the previous design, |, and u
2. Collect simulation data D

3. Solve g, and o, by MLE

max pdf (D‘Ga,aﬂ)

0y:0p
4. Form the prior distribution
pdf (8,) = pdf (a,)- pdf (B,)- pdf (7,)
@ -N(@?)  fi=N(fuo})  7-U(u)
5. Estimate 0, = [a, S, 7]
max pdf (D8, )- pdf (6,)

6.  Calculate the failure rate P;

P, =exp(a, +7,)
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m Case Study
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m Designed in 45nm CMOS process

m Each transistor is composed of several multipliers

< 4 independent variables are used to model process variations for each

multiplier

m Initially, BL is setto 1.1V, and BLB is 1.2V. If the output of
SA 1s 0, SA 1s considered as “PASS”. Otherwise, “FAIL”

BLl lBLB

Control | B sensing
—>
signal block

Output
>

Sense amplifier (SA) block
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m Four different methods are implemented:
1.  MC (brute-force Monte Carlo)

Provide the golden failure rate

2. MNIS (traditional importance sampling)

= 2000 simulations are used to find the importance distribution

3. SSS (traditional scaled-sigma sampling)
= 5scaling factors are empirically chosen

4. BSSS (proposed)

= Use the same simulation data as SSS

[MNIS] M. Qazi, M. Tikekar, L. Dolecek, D. Shah and A. Chandrakasan, “Loop flattening &
spherical sampling: highly efficient model reduction techniques for SRAM vyield analysis,” in DATE,

pp. 801-806, 2008.
[SSS] S. Sun, X. Li, H. Liu, K. Luo and B. Gu, “Fast statistical analysis of rare circuit failure events

via scaled-sigma sampling for high-dimensional variation space,” in ICCAD, pp. 478-485, 2013.
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7.3x107°

m 536 independent random variables for the 1st SA design

m The estimated failure rate by SSS with 10* samples is

m \We need to tune the 1st SA design to improve its performance

BLl lBLB

Control - | B sensing
—_—>
Signa| block

Output

—

Sense amplifier (SA) block
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m A 2nd SA design is tuned from the 1st design

N 552 independent random variables for the 2nd SA design

m The “golden” failure rate estimated by MC with 3.5x10°
samples is 7.1x10°°

4

l0g, (P )
S
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oo »
I ]
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SSs BSSS -
MNIS
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[ T

|
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# of Simulations

Golden failure rate

95% confidence

| intervals are compared

Slide 21



m A novel BSSS method is proposed to accurately estimate the
rare failure rates for nanoscale ICs in a high-D space

m BSSS extends SSS by using the “similarity” between
different SSS models fitted at different design stages

m SA Is used to demonstrate the proposed BSSS method

~ The dimensionality of the variation space is more than a few hundred

N BSSS achieves superior estimation accuracy over traditional MNIS

and SSS
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Thank You!
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Background

Traditional Scaled-Sigma Sampling — Overview

Q : failure region
. # of parameters

U
(@]

\\>

X

= <

I 1
! : . @ hyper-rectangular in Q

Ps v >3 AX : the volume of a hyper-rectangular
S=1s;S, S,

. # of dominant hyper-rectangular

-
Iog(Pg)za+ﬂ-log(S)+12

) ) S
AX ]
= log (Zﬂ)M/z +log(T) _ May not change a lot
_ - after changing Q
B=-M _
— Canchange a lot
= — rpelg (H )/ after changing Q
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is estimated by MC with 3.5x10° random samples

m The golden failure rate of the 2nd design is 7.1x107° which

Table 1. Failure rate and 95% CI [P, PV]. Golden P, is 7.1x107°

# of Sims 6000 7000 8000 9000 10000
Pl 0 0 0 0 0
MNIS P, | 1.5x10715 | 1.2x10-15 | 1.1x1023 | 4.1x10723 | 3.6x1013
pYU | 3.1x107%5 | 2.5x107%5 | 3.1x1013 | 1.1x1012 | 9.2x10713
Pt | 9.0x107 | 9.4x107 | 6.2x1077 | 4.5x107 | 5.1x1077
SSS P, | 4.4x105 | 3.8x105 | 2.0x105 | 1.1x105 | 1.0x10°®
pYU | 2.3x10-4 | 2.0x104 | 1.7x104 | 8.8x105 | 7.9x10°®
Pt | 2.4x106 | 1.8x10°6 | 1.7x10° | 1.5x10°6 | 1.5x107
BSSS P, | 1.3x105 | 9.0x106 | 8.0x10% | 7.0x10°¢ | 6.2x1076
PU | 4.8x105 | 4.1x105 | 2.8x10°5 | 2.4x105 | 2.0x107

Slide 25



