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Motivation
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= Each radio uses multiple channels
= Channel select filter is used to select channel of interest



Motivation (II)
Gitters)

Continuous Discrete
Time Time

Difficult to tune Easily tunable
Does not require additional filter | Requires CT anti-alias filter
Low power Medium power

Fc varies with PVT Fc is PVT tolerant

* Need low-power, linear tunable continuous time filters
" Integrators are key part of filters

* Design of high swing integrators is difficult in lower tech.
= Challenges

* Filter specs becoming more stringent



Motivation (lll)
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Active Filter Design

* Traditional design (Integrator based approach)
* Poles are moved from origin to complex plane
* Filtering is done in voltage mode
* Integrators are realized using OTAs in neg. feedback
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Active Filter Design

= Real low pass filter approach
e Real poles are moved to complex plane using neg. fb
* Filtering is done in current mode
* Low pass filters are realized using passives
* Lower number of low impedance nodes (Lower noise)
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Channel Select Filter (Block diagram)

Single ended shown
for simplicity

Actual implementation
is differential

= Cascade of first order pole and biquad

= First order pole
e Realized in current domain using gm cells and passives

e Ratio of gm cells gives gain



Low Pass Filter Design

VCM VCM

- DESi red SCCB inverters
e High input impedance and low output impedance
* Tunable cut off frequency

" G,, G,are gm cells (Biased inverters)

= @, converts input voltage to current

= @G, with neg. fb converts low pass current to voltage
= Ratio of Gm cells provides gain



Gm Non Linearity Cancellation: Low freq

= Assume Gm nonlinearity

out

* G, (x) =ag*ta x+a,x*+ax>

= All in band signal current is converted back to voltage
- Gl(vin) =G2(Vout)
= |n fully differential implementation
a
° Vout — Klvin + a_j (Kl o Klg)Vl?”L
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Non Linearity Cancellation: High freq

= Assume Gm nonlinearity

* G, (x) =ag*ta x+a,x*+ax>

* Gy(Vip)= 1z + 1

= Most of signal current is filtered
- IR =GZ(Vout)
= Unfiltered high frequency components

* Appear at the output
* Filtered by subsequent stages



Use of MOSCAP

= Lower resistor (R) and higher capacitor (C)

Reduces swing at V,cp

Use of high density MOSCAPS as filter capacitors
Continuously tunable cut off frequency

Helps in compensation

0 0.1 02 03 04 05 06 07
Time (uS)

Reduction of swing from 0.5V to 0.1V reduces IM; by 40dB



Noise Analysis

G/ Vn22
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= Noise of OTA and resistor are high pass filtered

= Noise of the Gm cells appear at the output

" The resistor doesn’t load negative feedback network
* Low R and higher Cis used for low swing at V,,



Self Compensation

= Excess loop delay = Instability v —

= Compensation
e Reduce the delay, Provide the fast path H(s)

= Resistor converts current to voltage indep. of freq
e Reduce the delay between Vin and Vout
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Self Compensation

= Excess loop delay = Instability v —

= Compensation
e Reduce the delay, Provide the fast path H(s)

= Resistor converts current to voltage indep. of freq
e Reduce the delay between Vin and Vout
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Self Compensation
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(Independent of tuning capacitor)



Self Compensation

' = Compensation

* Load compensates the loop
* Increases freq. response of loop

* Tracks with tuning capacitor

* W, independent of tuning

1 1

[ | Z —_— —— Z = — A
1 RC’ 2 Rc1Cct
1 1 ADC
u P1 = — , PZ = —
ro3C r01(Cp1+Cc1)
1 1
u P3 = — , P4_: —
r01Cp2 Rc1Cp1
o P5 - — , Wy = —
RCp3 ro1Cp2

(Independent of tuning capacitor)



Design of Gm cells
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Traditional d-ifferential pair

Swing limited by input V,
Current biasing
Gm is less PVT tolerant

Excess noise factor >1

VDD VDD - Vovl

Inverters

Swing limited by output
Voltage biasing
Gm is PVT tolerant

Excess noise factor=1



= Traditional OTA

Traditional OTA vs Inverter OTA (Swing)

* Vo,,, limited by output

* Vin_;, limited by input

" |nverter

* Vo, limited by output

* Vo, limited by output
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V; scales slightly with VDD

Vo =Vdd —AV

Vin_ =2AV +V.
Vppgr, =Vdd —3AV -V,

*Vo_ ., =Vdd —AV,,

Vomin — AVle
Vppmv =Vdd - 2AVle
Vdd =Vy, + V| +2AV,,,

AV, = Vdd —v;N ~ Vo |

AV = 125mV, V., = 0.383V, V., = 0.55V



Semi Constant Current Biasing (SCCB)

= Bias voltage (V,) is derived from NMOS current
* NMOS current is constant J

_|

= Input and output voltages are made equal ,%VM

 Auxiliary inverter with negative feedback —]
e Overall variation in gm is small 1
cm cell Metastable biasing
IM_- _-IA —
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Use of SCCB biased inverters
Replica bias network



SCCB: Simulation Results

= Variation in gm is reduced by 50%
= NMOS/PMOS current can be selected for best linearity

= Auxiliary inverter loads the main inverter

e Reduces the output impedance/ gain of amplifier
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SCCB: Linearity
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= NMOS/PMOS current can be selected
* To increase inherent linearity of inverter
e Optimal biasing results in 20 dB improvement in IMD
e NMOS and PMOS harmonic terms cancel out



Third Order Channel Select Filter
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Measurement Results (1)

= Prototype 3 order filter
* Fabricated in TSMC 65nm GP process
* Packaged in 5x5 QFN Package
 Source follower is used to drive the 50 Q) interfaces

= Area = 0.007mm?

24
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Measurement Results (lll)
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Measurement Results (IV)

Lowest IMD -53 dB

60 80 100 120

Frequency (MHz)

140

Output Swing 1Vpp

Measured intermodulation distortion at band edge across temperature

-50

-70

| | |
Lowest IMD -51 dB

| | | | |
80 100 120 140 180
Frequency (MHz)

160

Output Swing 1Vpp

Measured intermodulation distortion at band edge across power supply



Measurement Results (V)

Output Swing 1Vpp

Lowest IMD -51.5 dB
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Performance Summary & Comparison

This
Work

Technology (nm)

Supply voltage (V) 0.6 0.55-0.9 1 1.1

Power (mW) 26.2 1.9 4.4 4.6

Area/N (mm?2) 0.095  0.073 0.039 0.007 10x lower area
Bandwidth (MHz) 70 7-30 8.1-13.5 34-314 9x Continuous
Noise (nV/vVHz) 44 33 75 25 tunable

N 4 4 8 3

DC gain (dB) 0 0 0 3

1IP3 (dBm) 32.8 29.6 22.1 224 |IP3 @ 260 MHz
FOM (a)) 117 126 238 61

FOMT 182 177 173 186

[1] ISSCC 2014, [2]ISSCC 2012, [3] JSSC 2009



Conclusions

= Continuously tunable filter
* MOSCAPs are used as filter capacitors
e SCCB inverters for improved PVT tolerance

* Low pass filter architecture
e Self compensation to improve power efficiency

* Prototype design
e 34-314MHz tunable, 22.4 dBm IIP3 third order filter
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IIP3 (Out of Band: Simulation)

* Fc =34MHz
* Fin =1GHz, 1.1GHz
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