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Motivation 

 
 
 
 
 
 
 
 
 
 
 

Portable devices 
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Wi-Fi (802.11), Bluetooth 
HSPA (850,900,1700/2100) 
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ADC
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driver

34–314 MHz

 Each radio uses multiple channels 
 Channel select filter is used to select channel of interest 
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Motivation (II) 

 
 Need low-power, linear tunable continuous time filters 
 Integrators are key part of filters  

• Design of high swing integrators is difficult in lower tech.  
 Challenges 

• Filter specs becoming more stringent 
 

Filters 

Continuous 
Time 

Discrete 
Time 

Difficult to tune Easily tunable 

Does not require additional filter Requires CT anti-alias filter 

Low power Medium power 

Fc varies with PVT Fc is PVT tolerant 
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Active Filter Design 
 Traditional design (Integrator based approach) 

• Poles are moved from origin to complex plane 
• Filtering is done in voltage mode 
• Integrators are realized using OTAs in neg. feedback 
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Active Filter Design 
 Real low pass filter approach 

• Real poles are moved to complex plane using neg. fb 
• Filtering is done in current mode 
• Low pass filters are realized using passives 
• Lower number of low impedance nodes (Lower noise) 
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Channel Select Filter (Block diagram) 

 Cascade of first order pole and biquad 
 First order pole 

• Realized in current domain using gm cells and passives 
• Ratio of gm cells gives gain 
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Single ended shown 
for simplicity 
Actual implementation 
is differential 
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Low Pass Filter Design 

 
 

 
 Desired 

• High input impedance and low output impedance 
• Tunable cut off frequency 
 G1, G2 are gm cells (Biased inverters) 
 G1 converts input voltage to current 
 G2 with neg. fb converts low pass current to voltage 
 Ratio of Gm cells provides gain 
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2 2
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VCM VCM

VM metastable voltage of 

SCCB inverters
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Gm Non Linearity Cancellation: Low freq 

 Assume Gm nonlinearity 
• Gm(x) =a0+a1x+a2x2+a3x3 

 
 
 

 All in band signal current is converted back to voltage 
 G1(Vin) =G2(Vout) 
 In fully differential implementation  

• 𝑉𝑜𝑜𝑜 = 𝐾1𝑉𝑖𝑖 + 𝑎3
𝑎1

𝐾1 − 𝐾13 𝑉𝑖𝑖3  

 𝐈𝐈𝐈𝐈 = 𝟒
𝟑(𝟏−𝐊𝟏

𝟐)
𝐚𝟏
𝐚𝟑
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Non Linearity Cancellation: High freq 

 Assume Gm nonlinearity 
• Gm(x) =a0+a1x+a2x2+a3x3 

 

• G1(Vin)= IR + Ic 
 

 Most of signal current is filtered 
 IR =G2(Vout) 
 Unfiltered high frequency components 

• Appear at the output  
• Filtered by subsequent stages 
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Use of MOSCAP 

 Lower resistor (R) and higher capacitor (C) 
• Reduces swing at VMCAP 

• Use of high density MOSCAPS as filter capacitors 
• Continuously tunable cut off frequency 
•  Helps in compensation 

 
R

C

VC

2 1Vin

G1

VCM VCM

G2

VM

Vout

IR

IC

VMCAP

Reduction of swing from 0.5V to 0.1V reduces IM3 by 40dB 
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1 

Noise Analysis 

 𝑽𝒐𝒐𝒐𝟐 = 𝑲𝟏
𝟐

𝟏+(𝑹𝑹ω)𝟐
𝑽𝒏𝒏𝟐 + 𝑽𝒏𝒏𝟐 + (ω𝑪)𝟐

𝟏+(𝑹𝑹ω)𝟐
(𝑽𝒏𝟑𝟐 +𝑽𝒏𝟒𝟐 ) 

 Noise of OTA and resistor are high pass filtered 
 Noise of the Gm cells appear at the output 
 The resistor doesn’t load negative feedback network 

• Low R and higher C is used for low swing at VM  
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Self Compensation 

 Excess loop delay  Instability 
 
 Compensation 

• Reduce the delay, Provide the fast path 
  Resistor converts current to voltage indep. of  freq 

• Reduce the delay between Vin and Vout 
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Self Compensation 

 Excess loop delay  Instability 
 
 Compensation 

• Reduce the delay, Provide the fast path 
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 𝒁𝟏 = − 𝟏
𝑹𝑹

,           𝒁𝟐 = − 𝟏
𝑹𝑪𝑪𝑪𝑪𝑪

 

 𝑷𝟏 = − 𝟏
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,        𝑷𝟐 = − 𝟏
𝒓𝒐𝒐 𝑪𝒑𝒑+𝑪𝑪𝑪
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𝒓𝟎𝟏𝑪𝒑𝒑
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P1 Z1 Z2 P2 P3

P4P5

20dB/
dec

ADC

ffωu

Increasing C

(Independent of tuning capacitor) 



17 

Self Compensation 

 𝒁𝟏 = − 𝟏
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 Compensation  
• Load compensates the loop 
• Increases freq. response of loop 
• Tracks with tuning capacitor 
• ωu independent of tuning First order system 
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Design of Gm cells 

M1

M3

M2

M4
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0

Traditional differential pair Inverters 

Swing limited by input VCM Swing limited by output 
Current biasing Voltage biasing 
Gm is less PVT tolerant Gm is PVT tolerant 
Excess noise factor >1 Excess noise factor = 1 
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 Traditional OTA 
• Vomax limited by output 
• Vinmin limited by input 
 Inverter  
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• Vomin limited by output 

max

in
'

'
m

3

2

T TN

T

O A

N

Vo Vdd V

Vin V V

Vpp Vdd V V= −

=

∆

∆

−

= −∆

+

max

min

2
2

2

INV

INV

INV IN

IN

V

V

TN TP INV

TN TP
IN

P

V

TN T

Vo Vdd V
Vo V
Vpp Vdd V
Vdd V V

Vpp V

V

Vdd V V
V

V

= −∆

= ∆

= − ∆

= + + ∆

− −
∆

+

=

=

Vdd 
0 1.0 1.5 2.0 2.5 

Vp
p 

0.5 

1.0 

1.5 

VT scales slightly with VDD 

ΔV = 125mV, VTN = 0.383V, VTP = 0.55V 



20 

Semi Constant Current Biasing (SCCB) 

 Bias voltage (Vb) is derived from NMOS current 
• NMOS current is constant 
 Input and output voltages are made equal  

• Auxiliary inverter with negative feedback 
• Overall variation in gm is small 

Iref

Vcm

IAIM

Gm cell

M1

Vm

Vb
M2

M3 M5

M4

IAIM

VoutVin Vcm

Replica bias network 

VM

Use of SCCB biased inverters 

Metastable biasing 
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 Variation in gm is reduced by 50%  
 NMOS/PMOS  current can be selected for best linearity 
 Auxiliary inverter loads the main inverter 

• Reduces the output impedance/ gain of amplifier 
 

SCCB: Simulation Results 
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SCCB: Linearity  

 NMOS/PMOS current can be selected  
• To increase inherent linearity of inverter 
• Optimal biasing results in 20 dB improvement in IMD 
• NMOS and PMOS harmonic terms cancel out 
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Third Order Channel Select Filter 

ω𝑜 = 1
𝑅𝑅

, Q = 1+𝑲𝟐𝑲𝟑
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Measurement Results (I) 

 Prototype 3rd order filter 
• Fabricated in TSMC 65nm GP process 
• Packaged in 5x5 QFN Package  
• Source follower is used to drive the 50 Ω interfaces 
 Area = 0.007mm2 
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Measurement Results (II) 

Measured magnitude response (cut off frequency tunable from 34 -314MHz) 
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Measurement Results (III) 

Measured intermodulation distortion at band edge with control voltage 
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Measurement Results (IV) 

Measured intermodulation distortion at band edge across temperature 
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Measurement Results (V) 

Measured intermodulation distortion at band edge @fc=314MHz  across 15 chips 
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Performance Summary & Comparison 

[1] [2] [3] This 
Work 

Technology (nm) 65 90 90 65 
Supply voltage (V) 0.6 0.55-0.9 1 1.1 
Power (mW) 26.2 1.9 4.4 4.6 
Area/N (mm2) 0.095 0.073 0.039 0.007 
Bandwidth (MHz) 70 7-30 8.1-13.5 34-314 

Noise (nV/ 𝑯𝑯) 44 33 75 25 

N 4 4 8 3 
DC gain (dB) 0 0 0 3 
IIP3 (dBm) 32.8 29.6 22.1 22.4 
FOM (aJ) 117 126 238 61 
FOM T 182 177 173 186 

[1] ISSCC 2014,   [2]ISSCC 2012,  [3] JSSC 2009 

9x Continuous 
tunable 

IIP3 @ 260 MHz 

10x lower area 
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Conclusions 

 Continuously tunable filter 
• MOSCAPs are used as filter capacitors 
• SCCB inverters for improved PVT tolerance 
• Low pass filter architecture 
• Self compensation to improve power efficiency 
 Prototype design 

• 34-314MHz  tunable, 22.4 dBm IIP3 third order filter 
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Back up slides 
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IIP3 (Out of Band: Simulation)  

 Fc = 34MHz 
 Fin = 1GHz, 1.1GHz 
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