
Computing in 3D 
 

Paul Franzon 
North Carolina State University 

Raleigh, NC 

paulf@ncsu.edu 
919.515.7351 

http://www.ece.ncsu.edu/erl/faculty/paulf.html 

mailto:paulf@ncsu.edu
http://www.ece.ncsu.edu/erl/faculty/paulf.html


2 



3 3 



4 

Early days in 3D computing 

 Taking a conventional design, and making a 3D version often 
does not give interesting results 
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Instead 

 Seek a 3D-specific architecture 
 Do something you cant do in 2D! 

 Our typical goals:   
 Improve performance/power by > 25% 

 About a node equivalent 
 Improve a key bandwidth, or a highly dominant critical path 
 Often specifically exploiting high density face to face 

interconnect 
 
 

 Now:  Memory interfaces 

 Next:  Logic on Logic & Logic on Memory 

10 Tb/ps/mm2 



6 

Outline 

 3D Technology Set 

 Motivations 

 3D Memories 

 Computing beyond 3D Memory 
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3D Technology Set 

 3DIC with TSVs 

 

 

 

 

 

 

 Interposers: 
 50 µm thick 100 µm TSV pitch 
 Today: 10 µm wire feaures 
 Tomorrow: sub 1 µm wire features 

40 µm bump pitch 

25 to 50 
µm 

Tomorrow: 
- DRAM 20 µm longTSV 
- Logic: 5 µm long TSV 
- 1- 2 µm pitch or below 
- 25 µm bump pitch 

Cvia: 40 fF today  2 fF tomorrow 
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Attachment technologies 

 Solder micobumps 
 Today typically 40 µm pitch  
 25 µm pitch demonstrated 
 Potential for 5 µm pitch 

 Copper-copper  
 @ high temperature (> 400 C) 
 @ low temperature (Ziptronix DBI) 
 Typical 2 – 5 µm pitch 
 Potential for sub-1 µm pitch 

 

 

IBM 

Ziptronix 
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Transistor/TSV Integration Options 

Face-to-Face Face-to-Back Back-to-Back 

Via-First/ 
Via-Middle 

Via-Last 
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Compute: Energy / 32-bit Operation 
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DDR3 
2400 pJ/Op 
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Interface Energy / bit 

pJ/bit 
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HBM and HMC 

128 GBps 

ST-Ericsson 
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Tezzaron “Dis-integrated RAM” 
 Mixed technology concept 

 DRAM arrays in low-leakage 
DRAM technology 

 Peripheral circuits in high-
performance logic process 

 Bit and word lines fed vertically 
at array edge 

 No repair or test prior to 
assembly 

 BIST and CAM based 
remapping in logic layer 

 Claimed results 
 Reduced overall cost/bit 

 Two metals only in DRAM 
tiers 

 Effective ~ 60-70% fill factor 
(?) 

 Faster timing on interfaces 
 

Configuration 8 x 128-bit ports 

90 nm DRAM 
on 130 nm logic 

Density 1 Gb/layer of 
DRAM 

Burst access in 
page/port 

1 Gword/s 

(128 Gbps) 
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     Modular Partitioning 

3D FFT Engine in Lincoln Labs SOI 

 60% energy per op savings in memory 

 9% energy per op savings in logic 

 25% less silicon than 2DIC version 

Thor Thorolfsson 

0.427 
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Circuit Partitioning 
 Complete Synthetic 

Aperture Radar processor 
 10.3 mW/GFLOPS 
 2 layer 3D logic 

 

 All Flip-flops on bottom 
partition 
 Removes need for 3D 

clock router 

 

 HMETIS partitioning used 
to drive 3D placement 

Thor Thorolfsson 

Logic only Logic, clocks, 
flip-flops 

18 
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Cell level partitioning 
 Relying on wire-length reduction 

2D Design 0.13 µm Cell Placement split across 
6.6 µm face-to-face bump structure 
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Heterogeneous Computing 

Heat High Performance 
scalar CPU 

Low Power 
scalar CPU 

Fast 
Tezzaron 

DRAM RDL 
Interposer 

Heat 

SRAM 
SIMD Core 
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Two CPU Stack 

 Standardized PnP Fast Thread Migration (FTM) 
bus permits fast computing thread transfer 
between HP and LP cores 

 CPUs can be designed separately at different 
times with independent clocks 

High 
Performance 

CPU 

Low Power 
CPU 

FTM 
Switchable 
L1 Caches 

21 
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Exploiting Fast Thread Transfer 
 Sensors determine when to transfer thread 

 Threads swapped in around 50 CPU cycles 

 Complete SPECint benchmark suite 

Comparison with Running 
Data in 2-issue CPU alone: 

Energy / op Performance 
1-issue CPU alone 28% savings 39% reduction 

Two CPU stack 
with FTT  

27% savings 7% reduction 
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Thread Transfer Bus 
 A fast and simultaneous bi-directional bus specially tuned 

for vertical high-throughout transfer with built in self test 
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OFF-CHIP 
CTR



24 

Exploiting Fast DRAM 

 Gives speed of L2 cache with better capacity than L3 

 Exploit fast RAS-RAS cycle of Tezzaron DRAM 

Option Performance Power (W) 
4MB SRAM cache 1x 2.4 W 
240 MB DRAM 1.89 x 0.53 W 
Brings 16 core system power down by 15% 
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Implementation 

 130 nm 2D Version fabbed 
and validated 

 130 nm 3D Version to be 
taped out in November 2015 
 Ziptronix DBI process 

130 nm 

130 nm 

 
DiRAM4 

 

DBI 

RDL 

8 um 
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November Tapeout – 2 chip stack 

 Heterogeneous Processor stack and SIMD on SRAM stack 
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SIMD Compute Tile 

 Problem: 
 Power consumed in instruction management, control, and data 

management = 10x power of computation 

 Solution: 
 Low overhead SIMD tile 
 SIMD = Simultaneous Instruction Multiple Data 
 16 Floating point lanes with shallow pipelines 
 Logic on SRAM on DRAM  to manage memory BW needs 

16 Floating Point Units 

Shared Control Configurable  
Register File 

Scratch Pad  
SRAM 

Caches 
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Power-per-component for 16 EX Lanes 

register write 
back 
0% 
decode stage 

0% 

fetch stage 
0% 

operand 
collector 

8% 
register file 

39% 

load-store unit 
1% 

execution 
52% 

Total power 

Control overhead <10% of total power 

32 GFLOPS/W in 65 nm on FFT Benchmark 
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Thermal Issues 

 Air cooling of 3DICs can be done 
 But requires active power 

management, including task 
migration and performance throttling 

 Significant threat:  Co-heating of 
DRAM reduces refresh time 

 Also:  Need transient simulation to 
capture self heating of SRAM  

 

 Servers increasingly going to liquid 
cooling 
 40% reduction in cooling power 
 Permits higher performance due to 

increased system density 

Thermal Runaway in SRAM on Logic 
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Flux vs. Efficiency Tradeoff 
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Conclusions 

 Performance/Power improvement for each concept 

High Performance 
scalar CPU

Low Power 
scalar CPU

Fast 
Tezzaron

DRAM RDL
Interposer

SRAM
SIMD Core

Fast Thread Transfer (23% over HP scalar) 

L2/L3 cache 
in DRAM 
(8.5x over 
SRAM L2/L3) 

105 over GPU for 
Machine Learning 
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