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High-Brightness LED Lighting 

 High efficacy, long lifetime, and environmental friendliness 
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Why Wide-Input-Range LED Driver?  

 Wide-input-range LED driver is able to 
• handle a variety of inputs including HV spikes; 
• remove the additional protective clamp circuit; 
• simplify system design, reduce bill-of-material cost, and 

enhance reliability. 
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State-of-the-Art DC-DC Based LED Driver  

Synchronous current control offers good regulation of the 
average LED current under different input/output conditions. 
 The LED driver can only support a limited input voltage range 

with the maximum input voltage of 45V.  
 
 
 

 

* Z. Liu et. al., IEEE JSSC, Sep. 2015 
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Switching Power Loss in HV LED Drivers 

 In HV condition, the switching loss is significant due to hard-
switching, seriously degrading the converter power efficiency. 

 For CX = 500pF, fS = 1MHz, the switching loss is increased by 
6.25 times when input increases from 40V to 100V. 
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Proposed Wide-Input-Range LED Driver  

 The proposed adaptive resonant timing control (ARTC) supports 
wide input range and improves the power efficiency. 
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Auto-Configurable Switching Scheme 

 Auto configuration between hard-switching (HS) and soft-
switching (SS) dependent on the input voltage 

 Wide input range (5V to 115V) and output range (1 to 25 LEDs) 
 The switching loss is minimized in the SS mode under high 

input voltages.  
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Equivalent Circuit of LC Resonance 

 Both power switches are off during the transition, VX would 
be increased by the negative valley inductor current based 
on the second-order resonance of L and CX. 
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Resonant Peak with Output Voltage 

 VRP is positively related to VO and is at least 2 times larger 
than VO. 

 VRP could be lower than VIN when VIN is large, leading to the 
quasi-ZVS by the LC resonance.  

 

VRP=VO+[(-ILOZ)2+VO
2]0.5
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Adaptive Resonant Timing Control (1)  
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Adaptive Resonant Timing Control (2) 

 The ACHSSC takes outputs from zero-voltage detectors (VZP, 
VZN), the adaptive resonant timing emulator (VTR), and the 
synchronous current controller (Q) to produce the optimal dead-
time for controlling MP and MN.  

 Auto-configurable hard/soft switching mode controller 
(ACHSSC) 
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Proposed Adaptive Resonant Time Emulator  

 When VIN > VRP, the proposed ARTE 
generates TR under different output 
voltages for achieving quasi-ZVS 
operation of MP. 
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State-of-the-Art HV ZVS Detector  

 Enable adaptive ZVS detection under different input voltages. 
 Propagation delays of comparators and voltage divider result 

in long ZVS detection delay in 10s of ns.  
 

* L. Cong et. al., IEEE APEC, Mar. 2015, pp. 2007 – 2010. 

 Comparator-based HV zero-voltage-switching detector 
(ZVSD) 
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Proposed Body-Diode Based HV ZVSDs (1)  

 When VX is approaching VIN, a short pulse is generated and then 
coupled to the LV domain as VZP when VX = VA. 

 When VX is approaching 0, a short pulse VZN is generated when 
VX = VA.   
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Proposed Body-Diode Based HV ZVSDs (2)  

 The detection delays of the proposed ZVSDs in the LED 
driver are only 0.4ns and 1.8ns, respectively, at VIN = 115V.  
 The proposed HV ZVSDs enable high-speed and precise 

zero-voltage-switching detection of MP and MN. 
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Chip Micrograph and Experimental Prototype  

 The proposed on-chip LED driver is fabricated in a 0.5µm 
120V CMOS process. 

 Total chip area is 9.4mm2 including bonding pads. 
 Testing using Cree XB-D white LEDs 
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Measured HS Operation and Mode Change 

 IAvg is regulated at 350mA in the HS mode at VIN = 40V. 

(HS under VIN=40V, 8 LEDs) (Mode change from HS to SS) 

 The LED driver automatically changes from the HS 
mode to the SS mode when VIN ≥ 42V.  

 IAvg is the same in both modes to achieve good LED 
current accuracy. 

350mA 
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Measured ZVS Operation in SS Mode 

 Full ZVS of MP: VGP goes “low” after VX settles to VIN; Full 
ZVS of MN: VGN goes “high” after VX decreases to 0.  

(VIN = 100V, 18 LEDs, VIN < VRP) (VIN = 115V, 18 LEDs, VIN > VRP) 

 Quasi-ZVS of MP: VGP goes “low” when VX = VRP; while MN 
still achieves full ZVS.  
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Measured Efficiency and Current Accuracy 

 Peak power efficiencies are 93.6% (HS) and 94.4% (SS) with 
a 7.4% efficiency improvement by using SS mode at VIN = 
45V. 

 The variations of IAvg are within ±2.3% (HS, 1 – 10 LEDs) 
and ±6.2% (SS, 3 – 25 LEDs).  
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Comparison of Different HV LED Drivers 
  LM3404HV JSSC 2014 JSSC 2014  This Work 

Process N. A. 0.5µm 5V 
CMOS 

0.35μm 50V 
CMOS 0.5μm 120V CMOS 

Input Voltage (V) 6 – 75 11 – 20 10 – 40 5 – 115 

Switching Mode Hard-Switching Hard-Switching Hard-Switching Auto-Configurable Hard 
/ Soft-Switching 

Average LED Current 
(mA) 1000 50 / 100 350 350 

No. of Drivable LEDs N. A. 3 – 4 1 – 10 1 – 25 

Max. Output Power (W) N. A. N. A. 10 25 

Switching Frequency ~200 kHz ≤200 kHz ≤1 MHz ≤2.2 MHz in HS 
≤1.6 MHz in SS 

Inductor (μH) 68 / 330 100 – 1000 22 / 39* 10  –  39 
Settling Time (μs) N. A. 165* 8.5 2.5 

Dimming Frequency 
(Duty Cycle) 

<1 kHz 
(N. A.) N. A. 10 kHz 

(0.2 – 1) 
20 kHz 
(0.1 – 1) 

LED Current Accuracy 
(LEDs No.) 

±10% 
(N. A.) 

10% 
(3 – 4) 

±2.8% 
(2 – 10) 

±2.3% (1 – 10 in HS) 
±6.2% (3 – 25 in SS) 

Max. Power Efficiency 88%* 91% 92.5% 93.6% in HS  
94.4% in SS 
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Conclusions 

 A wide-input-range (5V to 115V) auto-configurable hard/soft 
switching LED driver is introduced and verified. 

 An adaptive resonant timing control (ARTC) establishes 
optimal ZVS of power FETs to minimize the converter 
switching loss in different input/output conditions. 

 The proposed body-diode based zero-voltage-switching 
detectors (ZVSDs) significantly reduce the ZVS detection 
delay.  

 The proposed LED driver supports the widest ranges of 
input voltages and output LED numbers, provides the 
highest power efficiency and achieves the best current 
accuracy compared to the prior art. 
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Q & A 
Thank you! 
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