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Soft-errors in Logic 
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Soft-errors in Logic 

• Ionizing radiation particle 

deposits charge track in Si 

– Charge generated by primary or 

secondary ions  

 

• Single Event Transient (SET) 

– Temporary voltage glitch at 

combinational node 

 

• Single Event Upset (SEU) 

– Directly affects the storage 

node logic state 

 

• Multi-Bit Upset (MBU) 

– Caused by multi-node charge 

collection (MNCC) 

– Must be mitigated by separating 

storage cells 
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HERMES2 Microarchitecture 

• MIPS 4Kc clone 

– 5-stage pipeline 

– Full TLB based MMU for operating system support (e.g., Linux) 

• From scratch (clean-room) microarchitecture for soft-

error hardness 

– 6
th

 pipeline stage added for errors in the branch delay slot 

• Fully synthesizable 

– With considerable help from specialized CAD flows for proper 

domain separation to avoid MNCC upsets 

– Custom circuits for cache arrays and register file 

• Based on ultra-low power, fully static readout 

– Custom self-correcting triple modular redundant (TMR) flip-

flops 

• Previously proven hard in heavy ion and proton testing 

• Software controlled machine repair and reporting on 

all soft errors 

– Any soft-error causes an SE exception (to software handler) 

– Excellent for exploring root causes, not just results of errors 
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HERMES2 Microarchitecture 

• Dual modular redundant (DMR) circuits 

– For speculative state and correctable architectural state 

– Two copies allows a mismatch to be detected before 

committing the speculative machine state to architectural 

state 
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HERMES2 Microarchitecture 

• Self-correcting TMR circuits 

– For key architectural state, e.g., program counter (PC) 

– This machine state is required for architecturally correct 

(ACE) operation and cannot be otherwise recovered 

– Includes all configuration (e.g., CP0) registers, bus interface 
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HERMES2 Microarchitecture 

• Register file (RF) and Caches (and TLBs) are DMR 

– RF A and B copies have parity protected 5-bit groups 

– Caches are DMR for simplicity—allows rapid porting to new 

processes 
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HERMES2 Microarchitecture 

• 7 DMR to architectural state error checkers 

– RF parity (from background scrub) 

– RF entry select (word-line) mismatch and data mismatch 

– DMR to TMR cross-overs for the fill buffer, store buffer, load 

buffer, and multiply accumulator (MAC) 
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Added Coprocessor Registers 

• The MIPS architecture explicitly allows hardware extensions 

through the coprocessor registers 

• Added self-correcting TMR protected registers: 

– SEE EPC that stores the PC to return to after an SE exception 

– RF data and address backup of the next RF entry to be written 

– Error Log 1 and 2: 7 specific error checkers prevent DMR data from 

committing to architectural state 

• RF parity error (from background scrub) 

• RF word-line (entry) mismatch 

• RF write data mismatch 

• Data Cache Unit (DCU) load and store buffers 

• Instruction fetch unit (IFU) fill buffers 

• Multiply divide unit (MDU) buffers to allow recovery of in-flight results—

the RF entries may no longer exist when these instructions retire 

• Instruction Execution Unit (IEU) 

– Error Mask 1 and 2: To mask error checkers from firing 

• Critical to proper error injection based validation 

– Registers to control which non-redundant copy for test instructions, 

etc. 
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Added Instructions 

• Instructions added to enable potentially very fast 

recovery and to control error correction:  

– Back up register file (BURF) restores the register file state to 

that before the instruction that triggered the error 

– Repair general purpose register (RGPR) repairs RF entry SEUs  

• This instruction compares the DMR copies of a given RF location, 

and 5-bit groups with parity errors are overwritten from the 

redundant 5-bit group with correct parity 

– TLB invalidate (TLBINV) and extensions to the standard MIPS 

CACHE instructions provide single-cycle TLB/cache 

invalidation 

• Test and recovery instructions to access single 

instances of the DMR copies 

– Extensions to the CACHE instructions 

• Read and write for error reporting and validation, respectively 

– RF testability write (RFTW) allows single instance writes 

• Can inject errors for processor validation and recovery test 

checking 

– Read RF data (RDRFDAT) allows data or parity to be examined 

independently of the check/repair mechanisms 

• For error reporting 
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Software Based Error Recovery 

• Checkers fire when mismatching A and B DMR data tries to 

commit to architectural state 

• A detected SEE error raises an (SE) exception 

– Executes in uncached memory—the cache may be the cause 

– Error handler determines the error is SE and not a normal 

exception—Soft-errors take priority, since they can cause other 

exceptions 

• Write and read register 0! If reads back non-zero, it is SE 

• R0 being read/write allows us a spare register to repair the RF using 

software 

    1. If the RF was written at the soft error, back it out 

– BURF instruction puts the old value back 

• (optionally) Report RF errors and the cause (Error Log) 

    2. Repair the register file 

– For each register: RGPR R1, RGPR R2, … RGPR R31 

• (optionally) Report cache errors 

    3. Invalidate the TLBs, I-caches and write-through D-caches 

    4. Return from the exception 

– The machine is now ‘clean’ 

– Restart by re-executing the last retired instruction 

• SE exception handler can be  

     as few as 86 or as many as 115,328 instructions 
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Physical Design 

• Auto-place and route flow keeps DMR and TMR 

domains separate to avoid MNCC upsetting 2 copies 
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Circuit Design: Self-correcting FFs 

• Self-correcting TMR flip-flops (FFs) contain key 

architectural state 

– This logic self-corrects and thus does not report errors 

– Layout prevents MNCC upsets 

• Self-correcting storage bits are separated by 3 rows (and wells) 
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Static RF Cell 

• 1-R 1-W RF Cell features 

– Dual-ended clocked write 

– Single ended fully static read-out  

• Two RWLs required per cell 

• Layout fits standard cell sizes 

– Compatible with 7-track library 

• Ability to use library cells in RF array reduces 

design effort 

– Horizontal M3 power and bit-lines 

– Vertical M2 word-lines 
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Static RF Read Timing 

• No read clocked enable causes RWL contention 

– Due to systematic timing variations in the decoder 

• MUXsel delayed to coincide with the RWL/RWLN pair 

to avoid output glitching 

Read Address  

RWL 

RBL 

Q 

If MUXsel 

not delayed: 

 

• Undesired  

     RBL transition 

 

• Propagates to Q 
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 Sub-bank and Byte Writes 

• Byte write support required by application 

– Cache with byte stores, e.g., SB $1 8($5)  

• Global WWL qualified by byte write enable to generate local WWL 

– This is susceptible to multi-bit soft-errors as storage in one word is 

adjacent—we don’t care because the caches are DMR 

 

 

 

• The data sub-bank has 16 entries, each 128-bits 

– Organized as 32-bits words 

– Cache is 4-way set-associative 

– Each word belongs to a different set 

– Each of the 16 bytes can be written independently and at most 4 

bytes are written simultaneously 
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Cache Cluster 

• Cache cluster has 4 sub-arrays and a tag array 

– 1k-byte of data and associated tag match, way select and word 

select circuitry 

– Data from each way is interleaved 

• Minimizes swizzling in the APR cluster routing for efficiency 
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DMR Register File 

• Same static RF read for low 

power and low voltage 

operation 

– Three read ports 

• Two for operands 

• Third for background scrubbing 

and saving old value before a 

store (required for added BURF 

instruction) 

– DMR WWLs prevent erroneous 

write 
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Error Checking Circuits 

• RF WL mismatch checker (example) 

– One’s catching domino circuits detect even transient 

mismatches 

– DMR WLs are compared in a timing window (CheckClk) 

• Delay for them to settle and avoid timing variability issues 

– Output latched for pseudo-static operation 
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HERMES2 Silicon Results 

• Implemented on a foundry low 

standby power  90-nm process 

• 312 MHz at 1.2 V V
DD

  

– 143 mW power dissipation running 

MAC/cache tests (best RHBD 

power/performance published) 

• Fully cached operation (no I/O) so 

the machine is at 100% activity 

 

 

 

 

 

 

– 330 MHz at 1.4 V V
DD

  

– Minimum operating V
DD

 = 650 mV 

(Lowest RHBD processor V
DD

) 

• Limited by standard foundry I/O—

should be operable below 300 mV 
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Silicon Validation 

• HERMES instructions allow software error injection 

– Allows: 

• Validation of the hardware for soft-errors without beam time 

• Provably correct software error correction response 
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Proton Testing 

• UC Davis Crocker Labs cyclotron 

– 63 MeV protons 

– 1.3 ͯ 10
7
 protons/cm

2
-sec flux (ave.) 

– 1.004 ͯ 10
11

 protons/cm
2
 total fluence 

• MAC/cache and MAC intensive 

programs 

• 509 SE exceptions taken 

– 551 checker reported errors 

• All perfectly corrected by handler 

with 100% return to program 

execution 

– No anomalous instruction or data 

fetches 

 

 

 

 

 

 

• Zero measured soft-error cross-

section post correction! 
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Summary 

• HERMES2 has: 

– No uncorrectable soft errors in 500+ events with proton 

testing to over 10
11

 protons/cm
2
 fluence 

– 312 MHz operation at spec 1.2 V V
DD

 dissipating 143 mW 

– Operable down to 650 mV V
DD

 for ultra low power operation 

 

• Demonstrated efficacy of software controlled soft-

error recovery 

– DMR speculative pipelines allow soft-errors to be “caught” 

– Errors cause an exception 

• Triggering error cleanup and reporting handler 

– Software allows detailed reporting to determine error root 

causes (not just the final manifestation of the error) 

– New instructions enable state repair and reporting, as well as 

hardware validation and provably correct software recovery 

 

• Automated RHBD design approaches and limited 

custom circuits allows fast porting to new fabrication 

processes 

34 C. Farnsworth  HERMES2  CICC 2015 



Thank you for your attention 
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