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Introduction 

Modern wireless systems often need multi-band operations to simultaneously 

support different communication standards. 

Spectrum-efficient modulations (e.g., 16 QAM and 64 QAM) in modern wireless 

systems often result in large peak-to-average power ratios (PAPRs) for the 

transmitted signals, which requires highly linear power amplifier. 
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Introduction 

A common multi-band PA solution is to directly assemble several single-band PAs 

either in a single chip or on a multi-chip module (MCM) 
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• Large chip/module area, dedicated antenna interface, and complicated packaging  

 increased cost, reliability, and nonlinearity concerns. 
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Introduction 

On the other hand, high-order passive networks and/or tunable passives can be 

utilized to achieve multi-band impedance matching and power combining for RF PAs 

[H. Wang ISSCC 2010] 

6th order passive network 

3rd order band-pass filter Tunable element 

[W. Neo JSSC 2006] 

• High-order network requires multiple inductors  large chip area and high passive loss. 
 

• Tunable elements such as varactor and switch capacitor bank  nonlinearity and reliability  

concerns as well as extra passive loss. 
 

• 2nd or 3rd harmonics are often located in-band and cannot be suppressed using off-chip filters 

 on-chip harmonic leakage cancellations are required. 
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Introduction 

In order to address these challenges, we propose digital polar power amplifier in 

CMOS with an ultra-compact output passive network and mixed-mode linearization 

techniques. 

• The class D-1 digital polar PA architecture is employed for high power >26dBm and 

simple output passive network. 

 
• Output passive network is implemented within one transformer foot print and provides 

optimum load pull impedance matching at two different frequencies without tunable 

elements. 

 
• On-chip 2nd harmonic leakage cancellation is achieved at the output passive network. 

 
 

• The AM-AM and AM-PM distortions are compensated by mixed-mode linearization 

techniques. 

6 



Outline 

• Introduction 
 

• Circuit Schematic and Simulation Results 
 

• Measurement Results 
 

• Conclusion 

7 



Circuit Schematic 
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Circuit Schematic 

Output passive network: dual band optimum load pull impedance matching 
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Circuit Schematic 
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• Dual band optimum load impedance matching within one transformer foot print. 
 

• PA device parasitic capacitance is absorbed into the output passive network design. 

Output passive network: dual band optimum load pull impedance matching 
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Circuit Schematic 

Output passive network: full 3D EM model and EM simulation results 

• The desired optimum real load impedance 13Ω (>+28dBm) is achieved at 2.6GHz and 4.6GHz 

(note that PA device capacitance is absorbed into output passive network). 
 

• The Passive efficiencies for the desired odd-mode (fundamental tone) are 78.5% and 62% for 
2.6GHz and 4.6GHz, respectively. 11 



Circuit Schematic 

Output passive network: 2nd harmonic leakage cancellation 
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Circuit Schematic 

Mixed-mode PA linearization techniques: digital AM-AM distortion compensation 
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• 7-bit digital amplitude control codes to synthesize the desired amplitude  precise interpolation 

of the transient envelope and direct pre-distortion. 
 

• The RF phase modulated input signals restore complex modulation at the output. 
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Circuit Schematic 

Mixed-mode PA linearization techniques: analog AM-PM distortion compensation 

• Non-linear capacitance Cgd of CG transistor (M3 and M4) is one of the main reasons for AM-PM 

distortion for digital class D-1 PA architecture.  
 

• In order to compensate AM-PM distortion, we employ varactors in the driver chain. 
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Measurement Results 
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• Standard 65nm CMOS process with low resistive substrate 100S/m. 
 

• The proposed PA is implemented within 1.5mm×1.5mm chip area and the diameter of the ultra-

compact output network is 406µm. 
 

• The supply for PA cores and digital drivers are 3V and 1.5V, respectively. 
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Measurement Results 
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• The measured peak PA Drain Efficiency (PA_DE) and power added efficiency (PAE) are 

40.7%/27.0% and 35%/21.2%  with +28.1dBm/+26.0dBm output power at 2.6GHz/4.5GHz. 
 

• The measured back-off efficiency curves closely follow the class-B PA. 
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Continuous-Wave (CW) measurement results 

• The measured 2nd harmonic suppression is 37.7dB at 2.35GHz (2nd harmonic at 4.7GHz). 
 

• The analog varactor control voltage is adjusted to compensate AM-PM  distortion. 

Measurement Results 
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Modulation test 64QAM 1MSym/s with Pout=22.28dBm at 2.35GHz PA DE 19.1% 

Measurement Results 
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Modulation test 256QAM 1MSym/s with Pout=19.27dBm at 4.7GHz PA DE 13.6% 

Measurement Results 
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Measurement Results 

Modulation test 256QAM 1MSym/s with Pout=19.27dBm at 4.7GHz PA DE 13.6% 

• The close-in out-of-band spectrum is kept below -35dBc with no additional filtering. 
 

• For 1MSym/s modulation with ×10 over sampling, the sampling images appear at 4.71GHz and 

4.69GHz with 36.7dB suppression, which is 11dB better than the zeroth-order hold sampling 

images. 21 



Modulation test with power back-off. 

Measurement Results 

• The measured rms EVMs for 0.5MSym/s 256-QAM signals (PAPR=6.62dB) versus Pout back-off 

up to 12 dB, showing EVM below 2.1% at both 2.35GHz and 4.7GHz. 

256QAM, 0.5MSym/s, Pout=18.64dBm at 2.35GHz (3dB PBO) 
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Comparison table 

This Work

Freq. 

(GHz)

Peak Pout 

(dBm)
Peak Efficiency (%) Modulation Test ( rms EVM/Pout/Efficiency) Technology

2.6/4.5 28.1/26.0
35/21.2 (PAE) 

40.7/27.0 (PA DE)

2.05% (256QAM)/21.51dBm/18.5% (PA DE) at 2.35GHz 

1.03% (256QAM)/19.27dBm/13.6% (PA DE) at 4.7GHz

Ref [1] 2.4/5 28.3/26.7

65 (nm)

65 (nm)35.3/25.3 (DE)

Configuration 

Single PA

Multiple PAs 3.98% (OFDM)/19.5dBm/14.1% (DE)

Ref [2]

Ref [7]

2.4/5 29/26 33.9/32.1 (DE) 5.6% (64QAM)/18.7dBm/N.A. 45 (nm)

1.95/2.4 31.8/32 28.8/32.4 (PAE) 2.8% (OFDM)/23.8dBm/N.A. 65 (nm)

Ref [8] 2.4/5 26.8/26.6 3.9% (OFDM)/17dBm/17.5% (PA_DE)N.A. 90 (nm)

Multiple PAs

Single PA

Multiple PAs

Output Network Configuration 

1 transformer (no switch or 

tunable element)

4 transformers

2 transformers

2 transformers

N.A.

Ref [9] 2/6 Single PA 1 transformer+3 inductors 22.4/20.1 28.4/19 (PAE) 2.5% (256QAM)/11.3dBm/N.A. 65 (nm)

This work is compared to the recently published multi-band power amplifier in CMOS 
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Conclusion 

•  A highly linear dual-band mixed-mode polar PA fully integrated in a standard 65nm 

CMOS is demonstrated. 
 

• The output passive network occupies only one-inductor footprint and achieves dual-

band optimum load matching, parallel power combining, double even-mode rejection, 

and differential to single-ended conversion.  
 

• Mixed-mode techniques are employed to largely suppress the AM-AM and AM-PM 

distortions.  
 

• The PA achieves +28.1dBm/ +26.0dBm peak Pout with 40.7%/27.0% peak PA drain 

efficiency at 2.6/4.5GHz with 37.7dB 2nd-harmonic suppression. 
 

• The PA supports high-fidelity amplification of high-order QAM modulations and 

demonstrates 2.05% and 1.03% rms EVMs for 1MSym/s 256-QAM signal at 2.35GHz 

and 4.7GHz.  
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