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Introduction 
Motivation :

�A dual-band WiFi transceiver design for high 

data rate requirement in multi-radio connectivity 

SoC

Challenge :
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Audio

4-in-1
Combo Chip

Challenge :
� RF architecture selection for wide frequency 

range (~1GHz), and wide signal BW circuit design
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Wider operation

frequency range

More complex 

modulation

scheme from

Challenges to Circuit Design
•Stringent EVM requirement
1.Phase noise
2.TX linearity

•Transceiver design
with broadband 

matching

Wider channel 

bandwidth from

40Mz to 80MHz

64QAM to 256QAM

Larger digital 

switching noise 

from faster data 

processing rate

•Digital to RF
de-sensitization 

1.switching noise 
2.clock harmonics

•Stringent IQ imbalance 
requirement(FD-IQ)
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4-in-1 Connectivity Combo
Block Diagram of SoC
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5GHz WiFi TX Architecture

─ 10-bit DAC, 960Msps
─ Fist-order passive

RC LPF

� First-order passive RC LPF 3dB BW can be designed a round 
100MHz. It reduces the FD-IQ mismatch caused by LPF .

� Adaptive PA bias circuit track input signal to boos t bias voltage 
to improve linearity 
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PA biasing limitation

To PA Balun

Cp

PA Vin

Vb

Rb
frequency∆f

PA biasing with large R 

and large ac-coupled C

From 

IQMPGA

� Rb and Cp forms a LPF, limit the BW of tracking PA b ias
signal significantly, cause memory effects
─ Asymmetric spectrum
─ IM3 degradation with larger frequency spacing of 2- tone

Vin

Vout
PA-bias

frequency

w/i Memory
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Wide bandwidth PA biasing 
To PA Balun

PA Vin

Vb

Vdd

frequency?f

PA biasing through 
transformer center tap

From 
IQMPGA

� Adaptive tracking bias is connected to the center-t ap of 
transformer secondary coil to increase the BW of th e 
tracking circuit
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T/R SW and RX Chain

� RX mode: S1,S2 = open

� Wideband RX design: Single-ended LNA with 
resistor shunt-shunt feedback
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T/R SW Configuration in TX
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�TX mode: S1, S2 = short

� C2 and L1 form a parallel resonance to mitigate TX loading effect

� C2 over C1 ratio is chosen for attenuation at node N1 and 
attenuation by switch S2 to protect the LNA transis tor



RX Analog Baseband 
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� 3rd order Chebyshev low -pass filter for adjacent and alternative-
adjacent channel rejection

� Residue DC offset of LPF output is less than 50mV a fter IDAC 
compensation

� A RSSI is used for wide-band blocker power level de tection



RX FD-IQ Calibration (Step 1)
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� The TX sends the multi-tone signals and loop-back to  the RX.
� The frequency domain IQ imbalance compensation coeff icients 

of each tone are derived by calculating the magnitud e and 
phase error of their corresponding image tones.



RX FD-IQ Calibration (Step 2)
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� TX sends the multi-tone signals “ below” the LO fre quency  in 
step 2 and  also loop back to RX to complete whole signal BW 
FD-IQ calibration.



LO Generator in 5GHz

� FVCO=(8/5)*Flo, 2*LO frequency is synthesized by DS B MIXER
� Offset LO generator architecture is adopted to avoi d PA harmonic 

pulling on VCO 
� Integrated SX phase noise <0.4 degree from system a nalysis to 

achieve overall TX EVM performance better than -32d B
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LO Generator in 2.4GHz

� FVCO=(5/2)*Flo, LO IQ signals are directly produced by 2/5 
divider

� Inductor-less LO generator circuit design saves bot h current 
and die area
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[8]Y-L Hsueh et al., “A 0.29mm2 Frequency Synthesizer in 40nm CMOS with 0.19psrms Jitter and <-100dBc Reference Spur for 802.11ac” ISSCC Dig. Tech. Papers, pp. 472-473, Feb. 2014.



Phase Compensated Power Detector 
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� True power detector by multiplying current (Iout) a nd 
voltage (Vout) to against antenna VSWR variation.

� Extra phase ( ψpar)caused by the implementation parasitic 
can be compensated by proper phase ( φ) insertion.
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2.4GHz WiFi PA 
with Load -Line Adjustment

Full/Half-Power Mode Low-Power Mode

� Full/Half-Power Modes with different PA branches, s haring the same PA 

output impedance (~35ohm) transformed from Balun. P sat of Full-

Power PA is 28dBm.

� ITN(impedance tuning network) transforms the Balun o utput 

impedance to higher impedance (~200ohm) for Low-Pow er Mode. Psat

of Low-Power PA is 15dBm.Slide 19
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Field -cancelling Layout  Topology 
for VCO inductor
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� Field-cancelling layout topology is adopted in VCOs  to mitigate 
mutual magnetic coupling among inductors.

� Assuming the distance S1 、S2 are sufficiently larger than r1 、
r2 radius, the mutual coupling to VCO inductor can be mitigated.
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[8]Y-L Hsueh et al., “A 0.29mm2 Frequency Synthesizer in 40nm CMOS with 0.19psrms Jitter and <-100dBc Reference Spur for 802.11ac” ISSCC Dig. Tech. Papers, pp. 472-473, Feb. 2014.



RX Desensitization 
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� Adaptive frequency selection in ADC/DAC, MCU, and PL L clock 
to avoid clock harmonics falling into desired channe ls

� Spread-spectrum clock (SSC) technique is used to  red uce clock 
harmonics level around 20dB
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Spurious Tone Reduction 
in Digital Baseband

MTCMOS

(Pwr. SW)
B<3:0>

DSP with 

Ron

Vcore

Iharmonics

� An equivalent current-mode RC filter can be formed to 
localize the high-frequency spurious signals near th e 
digital circuit itself
where R � turn-on resistor of power switch.

C � filler capacitor
Slide 23
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Die Photo
� 1P6M 55nm CMOS process
� Whole chip : 24.9mm 2

─ 2.4G transceiver : 2.1mm 2

─ 5G transceiver : 1.3mm 2

� WLCSP:
─ 0.25mm bump diameterWiFi 5G

Shared  RF 

WiFi_2.4G/BT

─ 0.25mm bump diameter
─ 0.4mm bump pitch

GNSS

FM 

TRX

WiFi_5G

Xtal
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Measured SX Integrated Phase Noise
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Synthesizer Integrated Phase Noise (from 100KHz to 10MHz)

� 5GHz Wi-Fi SX Integrated PN from 100kHz to 10MHz is 
smaller than 0.4 degree.
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Measured 256QAM TX Performance

� EVM=-32.7dB@17.2dBm Pout, Channel=5.775GHz 
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Wi-Fi 5G TX  Performance
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� The same EVM performances for different modulation 

scheme 
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Wi-Fi 5GHz Measured RX Sensitivity
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� 5GHz RX sensitivity is seriously degraded due to a spurious 

tone which is the 7 th order harmonics of digital 832MHz clock.

� 5GHz VHT20 MCS8 and VHT80 MCS9 sensitivity can be 

improved 5.5dB and 8.5dB with spurious tone-control  algorithm 

implementation 
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2.4GHz TX Performance Comparison 
in Full /Low -Power Modes
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� 100mA current saving can be achieved at 7dBm by cha nging Full_PA 
mode to LP_PA mode under HT20 MCS7, EVM=-30dB.

� Efficiency degraded from 12.5% to 8.3% due to imple mentation loss

CCK_11M=10.5dBm in LP_PA
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Comparison
This work ISSCC

2013 [10]
ISSCC
2014 [11]

Support WLAN standards
1X1 11bgn
+1X1 11ac

2X2 11bgn
+1X1 11a

4X4MIMO
11abgn/ac

Integrate 
PA, T/Rswitch,Balun

2.4GHz
5GHz

Yes/Yes/No
Yes/Yes/Yes

Yes/Yes/Yes
Yes/No/Yes

No/No/No
No/No/No

Int. LO PN
(deg.)

2.4GHz
5GHz

0.3
0.37

N/A
0.42

0.19
0.37

Chip-in
RX NF (dB)

2.4GHz
5GHz

4.2 (w/i SW)
4.7 (w/i SW)

4.2 (w/i SW)
4.2 (w/o SW)

3.0 (w/o SW)
4.3 (w/o SW)
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RX NF (dB) 5GHz 4.7 (w/i SW) 4.2 (w/o SW) 4.3 (w/o SW)
Chip-in
RX sensitivity
(dBm)

2.4GHz,54Mbps
5GHz,54Mbps
5GHz,11ac VHT80MCS9

-77.5
-77
-63.5

-78
-78
N/A

N/A
N/A
N/A

TX Pout(dBm)
@EVM=-25/-32dB
For 54Mbps/11ac

2.4GHz,54Mbps
5GHz,54Mbps
5GHz,11ac VHT80MCS9

20.5
20.0
17.8

20.5
17.3
N/A

-5
N/A
-5

Technology 55 nm 45nm 40nm

WiFi RF+Analog Die Area(mm2) 3.4(1x1) (*1) 3.8(1x2 in 5GHz) 21.5(4x4)

[10] R. Kumar, et al. ISSCC, 2013.
[11] Ming He, et al. ISSCC, 2014.
(*1)Including BT RF area



Conclusion
� The FD-IQ compensation scheme is adopted in RX 

chain to compensate the FD-IQ mismatch in RXLPF
� The TX achieves 17.8dBm in VHT80 256QAM with the 

proposed TX architecture and wide BW adaptive bias 
for the PA.

� Proposed Wi-Fi PA with load-line adjustment to maintain 
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� Proposed Wi-Fi PA with load-line adjustment to maintain 

power efficiency, covering 7dBm~21dBm wide output 

power range.

� Proposed spurious tone reduction method is 
implemented in SoC for improving de-sensitization.
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