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Introduction GCEMS

Modern wireless systems often need multi-band operations to simultaneously
support different communication standards.

Spectrum-efficient modulations (e.g., 16 QAM and 64 QAM) in modern wireless
systems often result in large peak-to-average power ratios (PAPRs) for the
transmitted signals, which requires highly linear power amplifier.
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Introduction

[
A common multi-band PA solution is to directly assemble several single-band PAs
either in a single chip or on a multi-chip module (MCM)
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* Large chip/module area, dedicated antenna interface, and complicated packaging
—> increased cost, reliability, and nonlinearity concerns.



Introduction GEMS

On the other hand, high-order passive networks and/or tunable passives can be
utilized to achieve multi-band impedance matching and power combining for RF PAs
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Tunable element

* High-order network requires multiple inductors - large chip area and high passive loss.

» Tunable elements such as varactor and switch capacitor bank = nonlinearity and reliability
concerns as well as extra passive loss.

« 20 or 3 harmonics are often located in-band and cannot be suppressed using off-chip filters

-> on-chip harmonic leakage cancellations are required. 5



Introduction GEMS

In order to address these challenges, we propose digital polar power amplifier in
CMOS with an ultra-compact output passive network and mixed-mode linearization

techniques.

e The class D' digital polar PA architecture is employed for high power >26dBm and
simple output passive network.

 Output passive network is implemented within one transformer foot print and provides
optimum load pull impedance matching at two different frequencies without tunable

elements.

» On-chip 2" harmonic leakage cancellation is achieved at the output passive network.

e The AM-AM and AM-PM distortions are compensated by mixed-mode linearization
techniques.
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Circuit Schematic

G

A Highly Linear Dual-Band Mixed-Mode Polar Power Amplifier: top schematic

Dual-Band Mixed-Mode Polar Power Amplifier Chip in Bulk CMOS
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Circuit Schematic

Output passive network: dual band optimum load pull impedance matching
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Circuit Schematic GEMS

Output passive network: dual band optimum load pull impedance matching
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* Dual band optimum load impedance matching within one transformer foot print.

* PA device parasitic capacitance is absorbed into the output passive network design.
10
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Output passive network: full 3D EM model and EM simulation results
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* The desired optimum real load impedance 13Q) (>+28dBm) is achieved at 2.6GHz and 4.6GHz
(note that PA device capacitance is absorbed into output passive network).

* The Passive efficiencies for the desired odd-mode (fundamental tone) are 78.5% and 62% for
2.6GHz and 4.6GHz, respectively. 1



Circuit Schematic

Output passive network: 2"Y harmonic leakage cancellation
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Circuit Schematic GEMS

Mixed-mode PA linearization techniques: digital AM-AM distortion compensation
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7-Bit Digital Control Code
for AM Interpolation

* 7-bit digital amplitude control codes to synthesize the desired amplitude = precise interpolation
of the transient envelope and direct pre-distortion.

* The RF phase modulated input signals restore complex modulation at the output. 3
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Mixed-mode PA linearization techniques: analog AM-PM distortion compensation
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for AM-PM Compensation

* Non-linear capacitance Cy4 of CG transistor (M3 and M4) is one of the main reasons for AM-PM
distortion for digital class D-' PA architecture.

* In order to compensate AM-PM distortion, we employ varactors in the driver chain.
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Measurement Results G

Chip microphotograph and measurement setup Vector spectrum analyzer
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« Standard 65nm CMOS process with low resistive substrate 100S/m.

* The proposed PA is implemented within 1.5mmx1.5mm chip area and the diameter of the ultra-
compact output network is 406um.

* The supply for PA cores and digital drivers are 3V and 1.5V, respectively. 16
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Continuous-Wave (CW) measurement results
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« The measured peak PA Drain Efficiency (PA_DE) and power added efficiency (PAE) are
40.7%/27.0% and 35%/21.2% with +28.1dBm/+26.0dBm output power at 2.6GHz/4.5GHz.

* The measured back-off efficiency curves closely follow the class-B PA. ,



Measurement Results GEMS

Continuous-Wave (CW) measurement results
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* The measured 2" harmonic suppression is 37.7dB at 2.35GHz (2" harmonic at 4.7GHz).

* The analog varactor control voltage is adjusted to compensate AM-PM distortion.
18



Measurement Results
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Measurement Results
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Measurement Results GEMS

Modulation test 256QAM 1MSym/s with Pout=19.27dBm at 4.7GHz PA DE 13.6%
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* The close-in out-of-band spectrum is kept below -35dBc with no additional filtering.

* For TMSym/s modulation with x10 over sampling, the sampling images appear at 4.71GHz and
4.69GHz with 36.7dB suppression, which is 11dB better than the zero™-order hold sampling
images. 21



Measurement Results GEMS

Modulation test with power back-off.
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» The measured rms EVMs for 0.5MSym/s 256-QAM signals (PAPR=6.62dB) versus P, back-off

up to 12 dB, showing EVM below 2.1% at both 2.35GHz and 4.7GHz.
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Comparison table

This work is compared to the recently published multi-band power amplifier in CMOS

(IZI%I(;) Configuration| Output Network Configuration P?:gr:; " [ Peak Efficiency (%) Modulation Test ( rms EVM/Pou/Efficiency) Technology
i or| 264 | s |10 W | g | SEIZOAD |05 o IO PADE AL | g5y
Ref[1] | 2.4/5 | Multiple PAs 2 transformers 28.3/26.7 | 35.3/25.3 (DE) 3.98% (OFDM)/19.5dBm/14.1% (DE) 65 (nm)
Ref[2] | 2.4/5 | Multiple PAs 2 transformers 29/26 33.9/32.1 (DE) 5.6% (64QAM)/18.7dBm/N.A. 45 (nm)
Ref[7] [1.95/2.4] Single PA 4 transformers 31.8/32 | 28.8/32.4 (PAE) 2.8% (OFDM)/23.8dBm/N.A. 65 (nm)
Ref[8] | 2.4/5 | Multiple PAs N.A. 26.8/26.6 N.A. 3.9% (OFDM)/17dBm/17.5% (PA_DE) 90 (nm)
Ref [9] 2/6 Single PA | 1 transformer+3 inductors | 22.4/20.1 | 28.4/19 (PAE) 2.5% (256QAM)/11.3dBm/N.A. 65 (nm)
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Conclusion GEMS

* A highly linear dual-band mixed-mode polar PA fully integrated in a standard 65nm
CMOS is demonstrated.

* The output passive network occupies only one-inductor footprint and achieves dual-
band optimum load matching, parallel power combining, double even-mode rejection,
and differential to single-ended conversion.

 Mixed-mode techniques are employed to largely suppress the AM-AM and AM-PM
distortions.

* The PA achieves +28.1dBm/ +26.0dBm peak Pout with 40.7%/27.0% peak PA drain
efficiency at 2.6/4.5GHz with 37.7dB 2nd-harmonic suppression.

» The PA supports high-fidelity amplification of high-order QAM modulations and
demonstrates 2.05% and 1.03% rms EVMs for 1MSym/s 256-QAM signal at 2.35GHz
and 4.7GHz.
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