Smart, Low-Power MEMS Help Usher in the Wearable Era

Fari Assaderaghi Vice President Advanced Technology Development

Inversesse Sensing Everything

Outline

- Although a lot of hype on IOT and wearables, they are becoming real
 - Much more than just smart watches and fitness bands
- Microstructure transducers are key enables of these systems
 Plethora of sensors and actuators, many more being developed
- Low power consumption crucial
 - The need for Always On
 - Avoid charging every 24 hours
 - Innovate at every level: MEMS, circuit, system architecture, algorithm
- Dramatic advancement in low power design, device performance and size necessary to unleash full potential of wearables

IOT and Wearables, Hype or Reality?

InvenSense

TSensors Summit, Oct. 2013

IoT and Wearables, Hype or Reality?

InvenSense

• Semiconductor Growth Drivers

- 2000-2007 personal computing, internet
- 2007-2014 wireless communication
- 2014-2020 IoT
- The number of connected IoT devices is to reach 20 – 30 billion by 2020
- Wearables are arguably the hottest and the most hyped sector

Wearables: The Internet of Us

Proliferation of Wearables

InvenSense.

Augmented Reality

Wearable Computing

Activity Tracker

Virtual Reality

Head-Mount Display

Fitness Watch

Extreme Sports Cam

Earbud and Fitness Tracking

Gesture Control

InvenSense

Smart Low-Power Transducers Key Enablers of Always-On Context-Aware Wearables

Morgan Stanley Research, September 2015

Transducers Relevant to Wearables

InvenSense

Activity recognition and classification, calorie count, GNSS assist, vital signs assist, gesture recognition and UI assist

- Accelerometer
- Gyroscope
- Barometric pressure sensor
- Magnetometer

Vital signs monitoring

- Photoplethysmography (PPG)
- Blood pressure monitor
- Oximeter

User Interface

- Microphone
- Haptic
- Force sensor
- Proximity and Ambient light sensor (ALS)

Environment monitoring

- UV sensor
- Temperature and humidity (RH&T sensor
- Gas sensor

Transduction Mechanisms

- Electrostatic (Capacitive)
 - Used in majority of MEMS interfaces today
 - Converts the stimulus to microstructure displacement
 - We will cover it in some detail
- Piezoresistive
 - Transduces strain to resistance change
- Piezoelectric
 - Transduces force to (charge displacement) to voltage
- Thermal sensors
 - Transduce temperature (IR energy) to resistance change
- Chemiresistors
 - Transduce gas presence to resistance change
- Optical transducers

 (HRM, PPG based, ALS)

Piezoelectric Transduction Examples

InvenSense.

Piezo-Actuator for Autofocus

Tunable lens: TLens[®]

poLight Corporation

PMUT (Piezoelectric Micromachined Ultrasonic Transducer) Array for fingerprint and gesture

UC Berkeley, UC Davis, InvenSense

Apple Watch and the Taptic Engine

InvenSense.

The taptic engine is what sets the Apple Watch apart. Without the taptic engine, the Apple Watch is just a beautiful digital trinket. With it, however, the device becomes much more.

Instead of vibrating furiously like other smartwatches, the Apple Watch does something that feels like a genteel nudge. It's far classier and less distracting.

Film Based Actuators Using Piezoelectric Polymers

InvenSense

SEM Actuator cross-section

13

150um

Chemiresistors

Convert presence of certain gas to change of resistance

Gas Sensor Platform -MEMS in CMOS Structure

Carbon Monoxide Detection

CICC September 2015

Electrostatic (Capacitive) Transduction

The most dominant mechanism used in MEMS

 Gyroscopes, accelerometers, microphones, altimeters, magnetic Lorentz Force sensors, timing devices

• Key characteristics

- Typically no need for special materials
- Can move in-plane and out-of-plane (multi-axes sensing)
- Needs bias voltage, sometimes large
- Output signals can be extremely small

Canonical Electro-Mechanical Mass-Spring System

InvenSense.

D. Shaeffer, IEEE Comms Magazine, April 2013

Capacitive Sense

InvenSense

For capacitive sensing, we need to think about charge $i = \frac{dQ}{dt}$ This not always leads to $i = C \frac{dV}{dt}$ But could be $i = V_{bias} \frac{dC}{dt}$

$$\Delta Q(\Delta x) = V_{bias} \frac{\partial C_s(x)}{\partial x} \Delta x$$

Bias voltage can be a few volts to 10's of volts

Example: MEMS Microphone

InvenSense

Sound = Air Pressure Fluctuation

- Diaphragm and backplate electrodes form a capacitor
- Sound pressure causes the diaphragm to vibrate and change the capacitance
- Very large dynamic range
 - Reference level: (94dB SPL): 1Pa
 - Normal conversation (60 dB SPL): 20 mPa
 - Can cover from 134dB (100Pa) (near jet engine) to <28dB (0.5mPa) (quiet library)

MEMS Microphone

- The membrane movement is from <<Å level at the lowest SPL to µm level at the highest SPL
- Need to be able to sense aF of capacitance change

Eigenfrequency=17478.547168

Capacitive Drive

 Force transduction is important for sensors that require the proof mass to be driven to a known motion

• Electrostatic force for parallel plate

$$F = \frac{\epsilon_c wh}{2g^2} V^2$$

• We can use DC bias and AC drive

$$F = \frac{\epsilon_c wh}{2g^2} (V_{bias} + V_{drive})^2$$

• Set $V_{bias} >> V_{drive}$ and we get a bipolar offset drive $F_{offset} \approx \frac{\epsilon_c wh}{2g^2} V_{bias} V_{drive}$

SiTime Resonator for Real Time Clock 524KHz / $2^{19} = 1$ Hz \rightarrow 1sec

Basic Equations for Accelerometer and Gyroscope

InvenSense

Accelerometer

- Input force, Newton's Second Law: $\vec{F} = m\vec{a}$
- Output displacement, Hooke's Law, F = kx

Rate Gyroscope

- Input force, Coriolis Effect, $\vec{F} = -2m(\vec{\Omega}X\vec{V})$
- Output displacement, Hooke's Law, F = kx, x = F/k

D. Shaeffer, IEEE Comms, Apr 2013

Capacitive Sensing Schemes

InvenSense

Continuous Time Interface

- Charge-pump multiplies transducer output
- Common for Microphones, Gyros, Resonators

Discrete Time Interface

- Electrical modulation at the front-end
- Common in "DC" sensors
 Accelerometers, Pressure sensors

Sensor Figure of Merit: SNR/(Energy per Conversion)

$$\frac{SNR}{E_C} \propto \frac{1}{4kT} \frac{\Delta x^2}{g^2} \frac{V_B^2}{V_{DD}^2} \left(\frac{C_s}{C_s + C_p}\right)$$

For a given SNR requirement, reduce power by

- Maximizing mechanical full-scale swing
- Maximizing bias or drive voltage
- Minimizing parasitic capacitance

Exploit all Tools of Power-conscious Low-noise Design

InvenSense.

Accelerometer

Duty cycled operation \rightarrow Low latency

100Hz

Microphone

Charge

Pump

Transducer gain & front-end High dynamic-range and bandwidth ADC

pر

ADC

20kHz

Charge Pump

Gyroscope

Transducer gain Weak signal & Quadrature → Front-end

DC 10Hz

Power Savings by Duty-Cycled Operation

InvenSense

Efficiently reduces power for applications with low update rates Challenges:

- I_{OFF}: Current from circuit blocks that cannot be duty-cycled, and leakage current
- T_{START}: Finite circuit start-up time → Want T_{START} << T_{ON}

T_{ON, MIN}: Limited by the max operating bandwidth, which is normally related to MEMS resonant frequency

Low Power Gyro Quadrature Cancellation

- Quadrature can be removed several ways
 - 1. At MEMS in force domain
 - 2. At sense amplifier in charge domain
 - 3. At demodulator in phase domain
- Compared to Method 3, Method 1 and 2 relieve the headroom requirement at analog front-end, allowing larger gain and suppression of ADC noise, achieving lower power
- Quadrature cancellation in force domain (Method 1) increases circuit complexity and power
- Method 2 is optimal for power consumption

Charge Pump Design Considerations

V Buffer High-V Chain V_{REF} V_{REF} CLK

- Open-Loop Charge Pump
 - ✓ Simpler implementation
 - ✓ No stability concern
 - ✓ No resistive load at output
 - ✓ Lower power consumption
 - Output voltage variation over temperature on the order of 2%

- Closed-Loop Charge Pump
 - × More complex
 - × Stability needs to be checked
 - × Resistive feedback increasing load current
 - × Higher power consumption
 - Output voltage variation over temperature on the order of 0.1%
- Charge pump architecture should be decided based on the sensor accuracy requirements

Key Considerations

- Accel and gyro: The larger the proof mass, the larger the sensing signal
 To keep area small, need high aspect ratio silicon to achieve large mass
- Displacement can be <Å, Δ C < aF \rightarrow Minimize parasitic C
- High density interconnect for multiple electrodes, shielding of sensitive connections
- Design of high dynamic range, high performance and low power ADC's, critical
- For sensors with mechanical oscillation (Gyro, MEMS timing), need low cavity pressure for high-Q
- Large bias voltages lead to higher transducer gain \rightarrow Charge pump design

Example – InvenSense Process Platform

- Single crystalline silicon structure with high aspect ratio
- Wafer scale integration of MEMS and CMOS for small form factor
- Vacuum sealed structure
- Low parasitic capacitance
- High density interconnect for multiple electrodes and easy shielding
- Integration of multiple sensors

InvenSense Accel and Gyro Examples

CICC September 2015

Example: SiTime's MEMS TCXO

InvenSense

Parameter	This work	Maxim DS32kHz	Epson TG-3530
Supply Voltage (V)	1.5 to 4.5	2.7 to 3.5	2.2 to 5.5
Temperature Range (°C)	-40 to 85	-40 to 85	-20 to 70
Frequency Stability vs. Temp (ppm)	± 3	± 7.5	± 5
Supply Sensitivity (ppm/V)	± 0.25	2.5	± 1
Start up time (s)	0.2	1	3
Current (µA) Clock enabled, no load	1 typ 1.5 max	1.85 typ 4 max	1.7 typ 4 max
Package Size (mmxmm)	1.55x0.85	18.5x6.35	5x10.1

Comparison Table (TCXO)

Applied Circuit Techniques

- Sub-threshold design
- Duty-cycling TDC
- Open Loop regulators
- Digital regulator to track P & T
- Low swing driver

Useful for wearables

- Very accurate real time clock
- Watch-dog timer
- BLE's Sleep Clock Timing
- Significant role in power consumption of cyclic sleep scenario

Smart Sensors and Algorithms for System-Level Power Saving

Concept of Sensor Fusion

InvenSense

Digital Motion Processing (DMP) Engine

- 6 degree-of-freedom (DOF) motion
- Activity Detection
- Continuous Calibration
 - DMP enabled accel, gyro, mag offset calibration

DMP – Accel offset calibration

InvenSense

- Accelerometer data monitored for motion around 3 axes
- Data fit to sphere and offset updated
- Better than 10mg can be achieved

Best motion for accel calibration

DMP – Magnetometer Correction

- Mag data monitored for motion around 3 axis
- Data fit to sphere and offset updated
 - Similar to accelerometer
- With gyro data convergence improves ("smaller" gesture needed), robustness improves
- Anomaly detection prevents updates under interference

Basic Activity Classification (BAC) Benchmark

OEM-1 confusion matrix (%)						
		Algorithm Output				
		Still	Walk	Run	Bike	Car
	Still	57.4	40.4	0.0	0.9	1.3
	Walk	8.7	83.3	1.0	6.1	0.9
Gold	Run	1.2	4.3	94.5	0.0	0.0
	Bike	0.0	4.5	0.0	90.5	5.0
	Car	44.7	0.0	0.0	2.7	52.5

InvenSense AAR confusion matrix (%)						
		Algorithm Output				
		Still	Walk	Run	Bike	Car
	Still	83.2	2.8	0.0	11.1	2.9
	Walk	5.6	85.3	1.4	6.3	1.3
Gold	Run	0.7	4.2	95.2	0.0	0.0
-	Bike	5.5	0.0	0.0	94.5	0.0
	Car	3.9	0.0	0.0	0.0	96.0

OEM-2 confusion matrix (%)						
		Algorithm Output				
		Still	Walk	Run	Bike	Car
Gold	Still	42.7	29.1	2.1	5.2	20.9
	Walk	5.5	80.9	0.4	0.8	12.4
	Run	5.3	3.8	88.5	0.0	2.4
	Bike	4.9	8.4	36.7	49.3	0.7
	Car	7.2	0.0	0.2	15.4	77.0

Algorithm	DMP Current (uA)
Basic Activity Classification / Pedometer	120uA
9 axis fusion	15
6 axis fusion	9
Accel offset cal	18
Gyro offset cal	12
Mag offset cal	22

Addressing Heart rate (PPG based) Accuracy and Power Problems

InvenSense

Problem: Heart rate measurement is not reliable when body is in motion

Solution: Remove motion from the PPG light signal

Problem: HRM Kills Battery when turned on too often

<u>No Intelligence:</u> Once every 5mir

Solution: Turn on HRM only when necessary (combine with context)

In-Activity HRM Accuracy Improvement

InvenSense.

CICC September 2015

37

Sensor-Assisted GNSS

InvenSense

GPS is a battery killer

Fitbit Surge: - 7 day Battery life - 5hr GPS Battery life

TomTom GPS Watch: - 17 day Battery life - 10hr GPS Battery life

Strava Fitness Apps - 4-6hr Battery Life w/ GPS

GNSS duty cycling using sensor data and algorithms

Keep accuracy of Run/Bike Speed/Dist/Route. Up to 60% power reduction

Complete Sensor Solution in 3x3mm

CICC September 2015

Conclusion

- The era of wearables has begun
- New microstructure sensors and actuators are key enablers
- Still dramatic advancement in power consumption, device performance, and size necessary to unleash full potential of wearables
- Innovations in IC design critical to meeting future needs
 - Efficient MEMS/Circuit fabrication and packaging
 - Extreme low power circuits with required SNR and range
 - Analog design techniques
 - Digital techniques to reduce analog deficiencies
 - Low power DSP, sensor fusion, and context aware algorithms