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In Seizure detection, and other

biomedical applications, high quality

signal analysis first requires sensor

outputs to be acquired with high

accuracy. Given the low amplitude of

signals, high impedance of

electrodes, and prominence of

artifacts (stray coupling, electrode

interfacing/movement), the analog

front end (instrumentations amplifiers

and ADCs) often dominate energy.

SYSTEM PROTOTYPE

CHIP SUMMARY
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• Multiplying Frontend ADC (Dual-slope ADC)

Each EEG signal sampled using passive S/H. Then, data

conversion is performed by measuring the time (number of

cycles) needed to charge/discharge a variable integration cap

CINT to the sampled voltage XIN. The variable cap effectively

enables multiplication during conversion.

• Backend Classification (SVM)

The SVM engine performs classification over the

computed feature vector by using a model that is

preloaded from training. The on-chip SVM is capable to

implement a linear kernel, polynomial kernel, and a

radial-basis function (RBF) kernel.

CONVENTIONAL SEIZURE –DETECTOR [1]

Technology 32nm CMOS SOI Sample Rate Up to 5kHz (typ. 64Hz)

ADC ENOB
2.8-3.6 (fin = 100 Hz)/

2.1-2.6 (fin = 1k Hz)

ADC INL/DNL 20.8-30.1/ 1.2-1.4 (LSB)

ADC Resolution 8 bits

Input Range 200 mV - 700 mV Energy / class. 1.35 uJ / class.

Supply Voltage

Analog: 0.9 V 

Digital: 0.9 V 

SRAM: 0.9 V
Energy / 

Feature Vector

12.04 uJ / 

Feature Vector

• Severe Non-linearity

Such implementation of ADC in 32nm

technology suffers from severe nonlinearity.

DNL is 1.5 LSB and INL is >30 LSB at 8-b

level

• High RMS Error

The nonlinearity leads to large RMS error

of the features; when normalized to the

ideal feature values, the RMS error is

measured to be 1.16, indicating errors

larger than the feature values themselves.

DIE PHOTO

• Restored performance

Using baseline model to classify error affected data will cause high false alarm rate. Despite the

feature errors, the error-aware model restores the system performance to nearly the ideal level.

ADC PERFORMANCE

Use machine-learning algorithms to relax analog front-end

Data-Driven Hardware Resilience (DDHR) [2]
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• Data distributions altered by

HW non-idealities; retraining

classification model to the new

distributions yields an Error-

Aware Model, limited by

information loss

Can be restored

Cannot be restored

• Mutual Information Preservation

The analog frontend downgrade the mutual information

from ~0.055 bits to 0.035 bits.

However the mutual information still remains in the

range where effective classification can be performed.

• Limitation of error resilience

The performance is limited fundamentally by how well

the error affected data retains information for

distinguishing class membership [2]. Mutual

Information (MI), uses Shannon entropy to calculate

the difference between the overall uncertainty of a

class label and the conditional uncertainty of the label-

DDHR systems are shown to be limited by MI.
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• Matrix Multiplication

One sample can be used for multiple conversions. Between conversions, the charge on CINT will be reset to VMID. For matrix multiplication, conversion is performed column-by-

column as input samples are acquired. Row-wise summation is performed by store/load each intermediate result in a buffer (SRAM).

CHIP RESULT

MATRIX MULTIPLICATION

This project explores the possibility of greatly relaxing the precision

requirements of analog frontend circuits by taking advantage of algorithmic

capabilities to model how information is represented in the resulting outputs.

The performance can be successfully restored in the presence of severe errors.

CONCLUSION

Performance 

Summary
Ideal 

Performance
Chip w/ baseline 

model

Chip w/ error-aware 

model

Sensitivity 5/5 5/5 5/5

Latency 2.0 sec. 3.6 sec. 3.4 sec.

Specificity* 8 443 4
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