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Abstract—Impedance transformation using on-chip passive
elements is ubiquitously used in RF and mm-Wave circuits
and systems for optimal power matching, interstage and noise
matching, and high-efficiency power delivery to the antenna
by power amplifiers. While conjugate matching gives optimal
efficiency for lossless passives, the results are markedly different
when constituent passives have finite quality factors. Given the
load and source impedances, there may be infinite ways to achieve
the transformation, albeit each incurring different loss. In this
paper, we investigate the methods to deduce the global maximum
efficiency of power transfer between two arbitrary impedances
with lossy passives. This paper also proposes methods to combine
this with nonlinear load-pull simulations for optimal efficiency
combiner and matching network for integrated PAs. To the best
of the authors’ knowledge, this is the first comprehensive analysis
of globally optimal impedance transformation networks between
arbitrary impedances with lossy passives.

I. INTRODUCTION

Impedance matching attempts to achieve conjugate match-
ing for maximum power transfer. However, losses in the
network can be significant, especially at high frequencies and
as such, it is not obvious what is the best impedance to
match to and what is the minimal loss path. Traditionally,
multi-dimensional optimization has been used to synthesize
impedance transformation networks with minimum loss [1].
However such a procedure is often heuristic and ad-hoc,
the number of elements in the network is often a guess
estimate. In this paper, we investigate the fundamental limits
of power transfer between two arbitrary impedances using
lossy matching passives and the globally optimal impedance
transformation network.

II. NON OPTIMALITY OF CONJUGATE IMPEDANCE
MATCHING NETWORKS

Let us consider the situation shown in Fig. 1. We are
interested in maximum power transfer to a load RL from a
source with impedance Zs = Rs(1− jQs) through a two port
matching network consisting of passive elements. This is a
typical case which we encounter in small-signal amplifiers.
However this argument can be extended to load-pull matching
of power amplifiers. In the lossless case, the passive network
should transform the impedance RL to the conjugate of source
impedance, i.e., Zin = Z∗s = Rs(1 + jQs). Maximizing the
power input looking from the source therefore maximizes the
power transfer to the load. However if the network elements
are lossy, conjugate impedance transformation (if possible)
does not guarantee maximum power transfer to RL since a

large fraction may be lost in the passive matching network.
Therefore at the frequency of interest, we are interested in
determining the lowest loss network , global maximum power
transfer possible to RL, the global optimum input impedance
Zin,opt and if such a transformation can be achieved using
lossy elements. We will try to motivate this with two examples,
as shown below.

Fig. 1. Optimally efficient impedance transformation network to maximize
power transfer efficiency η = PL

PAV S
with lossy passives. Graphically, this is

equivalent to finding the lowest loss path from ZL (A) to Zin,opt (B) among
the infinite possible paths and determining the optimal value of Zin,opt. In
general Zin,opt 6= Z∗

s .

Example 1: Consider a case, where a common-emitter
power amplifier delivers 250 mW at 100 GHz. This requires an
impedance transformation from RL= 50 Ω to Z∗s = 2 + 2jΩ.
In this example, we transform the impedance to the exact
desired impedance of Zin = 2+2jΩ. Fig. 2 shows six possible
matching networks (six possible paths on the Smith Chart), all
of which have markedly different efficiencies due to the finite
quality factors of the passives (Qcap = 10, Qind = 10 in this
example). The efficiency of this network critically affects the
overall efficiency of the transmitter and it is neither intuitive
nor obvious what is the most optimal path on the Smith Chart.

Fig. 2. Example 1: Six possible matching networks with different efficiencies
and the corresponding paths on Smith Chart forRL= 50 Ω to Z∗

s = 2+2jΩ at
100 GHz. The passives have finite quality factors (Qcap = 10, Qind = 10).



Example 2: Let’s consider another example to demonstrate
that conjugate matching is, in general, sub-optimal for lossy
networks. Let the source impedance Zs = Rs(1 − jQs)
(capacitive, Qs > 0), ZL = RL(1+jQL) (inductive, QL > 0)
and Zin = Rin + jXin. The total input power to the network
is given by Pin = I2sRin/2 and the total input reactive
power Preac,in = I2sXin/2 = Pind − Pcap + Preac,L , where
Pind, Pcap are the reactive power stored in inductors and
capacitors of the matching network respectively, and Preac,L

is the reactive power in the load given by Preac,L = QLPL
1

Optimal Network: The loss in the matching network Ploss

is related to the reactive powers as Ploss = Pind

Qind
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.Therefore, the loss in the

matching network is minimized when Pcap = 0 i.e., matching
network strictly composed of inductors with no capacitors
which allows us to reach the theoretically lowest loss [2].

Optimal Zin: As argued before, Zin,opt 6= Z∗s in general.
In fact, Zin,opt can be analytically derived as follows. For
Pcap = 0, the power delivered to the load PL = Pin−Ploss =
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The globally maximal efficiency of power transfer, in such a
case, is given by

ηmax =
PL,max

Pavs
=

1 +Q2
ind

Qind(Qind +Qs)(1−QL/Qind)
(2)

It can be seen that as QL →∞, η → 1 as expected while as
Qs →∞, η → 0 which also makes intuitive sense [2].

Note1: While the analysis presented provides globally opti-
mal solution, given ZL, there is only a limited range in Smith
Chart which can be reached with a purely inductive network
with no capacitors. This is shown in Fig. 3. Additionally, there
are constraints on the nature of source impedance which can
be matched to Zin,opt with purely inductive networks. As an
example, from (2), Qind > QL, and Qs(Qind − 1/Qind) > 2
(from (1)). Fig. 3 shows an example with Zs = 10−20jΩ and
Zload = 30Ω (Qs = 2, QL = 0) and Qind = 5 which meet the
conditions. In such a case, we obtain Zin,opt = 17 + 15jΩ 6=
Z∗s (1), with PL,max = 0.74Pavs and Pin = 0.9Pavs. This
implies that the optimally efficient network only transfers 90%
of Pavs into the network and 74% of Pavs reaches ZL. This
is a globally optimal solution for the given quality factor of
passives and it is not possible to reach higher efficiency with
any combination of the passive elements.

1Reactive power at frequency ω in an inductor L and C with current i is
defined as Pind = ωWm = i2ωL

2
and Pcap = ωWe = i2

2ωC
, where Wm

and We are the magnetic and electrical energy stored in the inductor and
capacitor.

Note2: As is evident from the derivations of ((1)-(2)), opti-
mal efficiency is achieved as long as the network is composed
of only inductors, independent of the topology. Therefore, if
Zin,opt lies in the ‘reachable’ space in the Smith Chart as
shown in Fig. 3, all possible networks/paths consisting of only
inductors between ZL and Zin,opt have identical efficiency
(74% in this example) and represent the globally optimal
solution.2 The efficiency contours are plotted in Fig. 3.

Fig. 3. (a) For lossy networks, Zin,opt 6= Z∗
s . Efficiency contours and

Zin,opt are shown for Zs = 10− 20jΩ and Zload = 30Ω and Qind = 5.
(b) All possible networks/paths consisting of only inductors between ZL and
Zin,opt have identical efficiency (c) Possible range of impedances which can
be reached from ZL (= 30 Ω in this example) using only inductors. If Zin,opt

lies in this region, (1)-(2) represent the globally optimal solution.

III. ALGORITHM FOR GLOBALLY MAXIMUM-EFFICIENCY
MATCHING NETWORK FOR ANY ZL AND Zs

In this section, we will consider the problem shown in
Fig. 1 which attempts to find the globally optimal-efficiency
impedance transformation network between two arbitrary
impedances ZL and Zs. We will address two parts to this
problem. Firstly, we will address the lowest loss path between
two impedances ZL and Zin,opt. Secondly, we will also
determine Zin,opt for given impedances Zs and ZL and the
passive quality factors QL and Qc. The method to arrive at
the optimal path is described below.

A. Optimal Conjugate Matching Networks(OCM)

1) Any arbitrary path in the Smith Chart can be approxi-
mated with a combination of parallel and series passive
elements as shown in Fig. 4. Therefore, first discretize
the impedance and admittance space of the Smith Chart
and locate the load impedance (ZL).

2) Efficiency of power transfer in a path of length ∆pi
between impedances Zi and Zi + ∆Zi realized with a
series element ∆X and ∆Y with quality factor Q can
be evaluated as shown in Fig. 4

ηi =


1

1+
|∆X|
QR

if ith element is added in series,
1

1+
|∆S|
QG

if ith element is added in parallel

3) Total efficiency in any path ‘p’ is, therefore, given by
ηtot,p =

∏N
i=1 ηi, where N = total number of elements.

2If the reactive energy is purely capacitive, (i.e., Zs is inductive) and the
matching network is strictly composed of capacitors, the similar observation
can be noticed.



Fig. 4. Algorithm for optimal path between two impedances ZL and Zin,opt. Any arbitrary path can be approximated with a set of parallel and series
passive elements and the efficiency of power transfer of any path can be evaluated as shown. Designating each path loss as the cost function or distance,
finding the globally optimal path is reduced to finding the path between two nodes in graph with the minimum distance. The figure also shows the examples
of optimal efficiency paths and globally optimal efficiency achievable with lossy passives of various quality factors.

4) In this way, the entire Smith chart can be discretized
into small paths ∆pi with a ‘distance’ or cost function
of ∆pi being defined as ∆di = − ln(ηi). Therefore, total
distance or total cost for any path ‘p’ between ZL and
Zin,opt can be evaluated as dtot,p =

∑N
i=1 ∆di.

5) The problem of globally optimal path between the nodes
ZL and Zin,opt now reduces to finding the path with the
shortest‘distance’ dtot.

6) There are various algorithms that can accomplish this.
As an example, Dijkstra’s algorithm [3] can be applied
to find the ‘shortest’ distance from load impedance to
source impedance with complexity order O(|V 2|), where
V is the number of nodes in the graph. Dijkstra’s
algorithm applied to this problem is briefly described
below

a) Mark all points/nodes in the discretized Smith
Chart as unvisited. Set the current node as the node
of load impedance (ZL) and set its nodelength
(which represents the shortest distance of current
node from ZL) as zero.

b) Mark the current node as visited and add it to the
visited group. If all the nodes are visited then stop.

c) Find the non−visited node (Vk) at a shortest dis-
tance from the visited group.

d) Store the nodelength of this node (Vk) as dmin(Vk)
and define function f(Vk) = |Z(Vk) − Z∗s |. Also
store its immediate previous node.

e) Go to step (b)
7) Find the node (Vn) that minimizes f(Vn) and back trace

the path. Max Power transfer efficiency of the matching
network is given by ηopt,conj = e−dmin(Vk).

As an example, Fig. 4 shows the globally optimal efficiency
path between two sets of impedances ZL = 75 + 20jΩ,
Zin = 10 − 10jΩ and ZL = 50Ω, Zin = 10Ω for two
sets of quality factors and a Smith Chart discretized to 2000

points. The figure also shows the global maximum efficiency
achievable with impedance matching between ZL = 50Ω and
Zin = 10Ω as the quality factor of the passives vary.

B. Optimum Matching (OM)

Generally, for lossy networks as shown before, Zin,opt 6=
Z∗s . Additionally, it may also not be possible to reach Z∗s with
the given lossy passives. In order to find the globally optimal
power transfer efficiency between Zs and ZL, the algorithm
can be modified to find Zin,opt and the optimal path to reach
the impedance. The power transfer efficiency can be modified
to reflect the impedance mismatch in such a case as

ηopt =
PL

Pavs
=
PL

Pin

Pin

Pavs
= ηlossηs (3)

where ηs = 4RinRs

|Zin+Zs|2 represents the efficiency of power
transfer from the source to the network (Fig. 1). In case of
conjugate matching, ηs = 1. Therefore, in order to find the
optimum impedance matching path which delivers maximum
power to the load, the function in step 6(d) of the algorithm
is changed as f(Vk) = − ln(ηs) + dmin(Vk). In this case, the
net optimal efficiency is given by ηopt = e−f(Vn), where Vn
is the optimal node.

IV. DESIGN EXAMPLES

A. Approximating the optimal path with finite-order network

While the optimal path with the lowest loss is not practically
realizable, the algorithm provides us with the starting point
to approximate the highest efficiency path with finite order
networks. Fig. 5 illustrates this with an example where the
Zload = 100Ω and Zs = 1 − 1j (@ 100 GHz) with
Qind = 10, Qcap = 10. The optimum conjugate matching
path and its approximation to one, two and three networks are
shown in Fig. 5. It can be seen that the three-stage network



with properly chosen passive elements can reach close to the
optimal efficiency.

Fig. 5. Examples of approximation of the optimal path with finite-order
networks.

B. Optimal Matching Vs Optimal Conjugate Matching

Fig. 6 illustrates the case where there is a significant
difference in power transfer efficiencies between optimal
matching and optimal conjugate matching. Consider the case
where the output impedance of a small signal amplifier is
Zs = 4 − 16jΩ (@ 100GHz) and the passives have quality
factors Qind = 5, Qcap = 10. Based on the algorithm, Fig.
6 shows the contours of ηloss and ηs (3) from ZL = 50Ω.
The net power transfer efficiency (ηtot) is the product of
the two efficiencies. This results in an optimal impedance of
Zin,opt = 9 + 15jΩ 6= Z∗s where the power transfer efficiency
is 57%, while for conjugate matching, maximum possible
efficiency is 20%. Infact, the efficiency of power transfer with
no matching network is higher at 25%. As is shown in Fig. 6,
this situation arises because the the conjugate impedance is
located towards the edge of space of possible transformed
impedances with the given quality factors, as shown in Fig. 6.
Intuitively, the extra network to reach the exact point Z∗s
induces excessive loss degrading efficiency dramatically.

Fig. 6. Optimal Matching Vs Optimal Conjugate Matching. For lossy
passives, the set of all possible transformed impedances only cover a subset
of the Smith Chart. The loss for brute force conjugate matching can increase
dramatically if Z∗

s is located towards the edge of the ‘reachable’ space.

C. Optimal Matching with Nonlinear Loadpull Simulations

The algorithm for optimal matching network can be merged
with nonlinear load-pull simulations for optimal power ampli-
fier combiner and matching network design. This can be in-
corporated in (3) where ηs measures the efficiency degradation
due to impedance mismatch. For a small-signal amplifier, this
can be easily expressed as ηs = 4RinRs

|Zin+Zs|2 . In case of a power
amplifier, the decrease in power delivered from the load-pull
can be obtained from the nonlinear load-pull simulations. The
core algorithm remains unchanged.

An example of a 4-way power combiner at 100 GHz in
0.13 µm BiCMOS process is shown in Fig. 7. The impedance
looking into the combiner by each of the four unit amplifiers
is 23− 31jΩ while the load-pull impedance of each amplifier
(We=48×0.12µm2) is given by ZLP = 5 + 13jΩ. The avail-
able passive quality factors are Qind = 16, Qcap = 10. Fig. 7
shows the results when the nonlinear loadpull simulations
are incorporated into the algorithm to generate the optimal
matching network and optimal conjugate matching network.
In this case, both efficiencies are similar and the details are
shown in Fig. 7.

Fig. 7. Optimal matching network method combined with nonlinear load-
pull simulations enables globally maximal efficiency matching network and/or
combiner for power amplifiers. The figure shows the layout for the 4-stage
power amplifier with optimal combiner at 100 GHz.

V. CONCLUSION

This paper presents methods to analyze and derive globally
optimal efficiency impedance matching networks with lossy
passives. We derive optimal impedance to be matched for lossy
passives, range of possible matching achievable and globally
optimum Smith chart trajectory to minimize loss in impedance
matching. The algorithm can be easily combined with nonlin-
ear load-pull simulations for optimal power amplifier combiner
and matching network design.
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